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Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the
importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed
to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside
world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory
system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has
shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate,
adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against
olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa,
review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious
disease.
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INTRODUCTION
Remarking upon the intoxicating power that odors hold over our
memories, Hellen Keller once said “smell is a potent wizard that
transports you across thousands of miles and all the years you
have lived”. Unfortunately, the pathway for smell may also
transport neuroinvasive pathogens directly into our brains. Nature
has exquisitely designed the olfactory system to achieve the sense
of smell through a unique and complex anatomical arrangement.
The olfactory mucosa (OM), consisting of a pseudostratified
epithelium and lamina propria, lines the upper portion of the
nasal cavity in the upper respiratory tract (URT). Neurobiologists
have studied the biology of olfaction, including the life-long
neurogenesis and unique patterning that characterize the
olfactory system, for decades. However, very little effort has been
made to elucidate how this sensory tissue is protected from
pathogens. The pandemic caused by SARS-CoV-2 led to millions of
short- and long-term smell loss cases. Indeed, for many people,
loss of smell was the most striking first symptom of infection. The
olfactory neuroepithelium is home to several unique cell types,
but most importantly, it contains numerous olfactory sensory
neurons (OSNs). The cell bodies of these neurons reside within the
neuroepithelium, where they extend their dendrites with exten-
sive cilia directly into the mucosal airway. If these cilia encounter
an odorant, the OSN can rapidly relay a signal along the length of
its axon. OSN axons converge to form bundles that then traverse
holes in the cribriform plate of the skull, terminating directly in
the olfactory bulb of the brain [1]. As a result, olfaction is a
sensitive and efficient process for communicating information
about the external environment. However, precisely because the
OM simultaneously straddles the airway and the brain, microbes

can subvert this biology to directly invade the CNS, bypassing
conventional brain barriers with disastrous consequences, includ-
ing fatal meningitis and encephalitis. Even for nonneuroinvasive
pathogens such as SARS-CoV-2, local olfactory infection can drive
inflammatory reactions that impact the adjacent CNS.
The olfactory mucosa can therefore be considered a mucosal

barrier for the brain. Moreover, it is an important component of
the upper airway. The URT is frequently thought to be a relatively
homogeneous tissue, but unlike the respiratory lining of the URT,
the OM is a distinct neuronal tissue with vastly different cell types
and immune considerations. The OM plays an important role in
the pathogenesis of respiratory diseases, even if CNS symptoms
do not occur. The nose is the entry site for most respiratory
pathogens, many of which have known olfactotropism; others
have undefined olfactotropism. The immune response in the OM
can therefore be critically important for preventing pathogen
dissemination to other tissues in the body. Because OM pathogen
replication may also serve as a pathogen reservoir, the OM
immune response likely also serves to reduce transmission
between individuals. In addition, infection-related OM damage
impairs the ability to smell, an outcome that negatively impacts
quality of life and the ability to sense environmental danger.
Immunity against olfactotropic infections is therefore essential to
prevent CNS neuroinvasion and respiratory pathogen dissemina-
tion and transmission and to protect the sense of smell itself.
Anosmia, smell loss without acute airflow blockage, was quickly

recognized as a negative effect of COVID-19 but also indicated
that the virus distinctly impacted the olfactory mucosa. The
ubiquity of olfactory infections during the COVID-19 pandemic has
stimulated interest in the OM as an immunological tissue.
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Unfortunately, this interest has served to highlight how poor our
understanding of immune responses in the olfactory system is. As
an additional side effect of the pandemic, researchers and the
public are beginning to pay more attention to other potentially
olfactotropic pathogens. Indeed, many respiratory and neurotro-
pic pathogens are able to infect the OM, but the attention that the
pandemic brought to olfactory infection has focused an important
spotlight on this understudied URT region. Nevertheless, due to
difficulty in obtaining olfactory biopsies and how infrequently the
olfactory system is considered clinically, many common infections
may impact the OM in ways we do not yet understand.
Furthermore, many animal models of infection fail to establish
olfactotropism in airway diseases. We currently are at an inflection
point in the study of olfactory disease pathogenesis, as recent
studies in animals and in humans have begun to emphasize the
importance of the OM immune response.
Olfactory immunology has implications for several topics of

clinical importance, including vaccination, encephalitis and
meningitis, postviral olfactory dysfunction, microbial transmission,
innate and adaptive immunity, and neuroimmunology. This
review summarizes infectious diseases and subsequent immune
responses in the olfactory mucosa. We directly address SARS-CoV-
2 and similar viral pathogens that infect the olfactory mucosa.
Olfactory immunity against these microbes is also discussed, and
future directions for the nascent field of olfactory immunology are
considered.

OLFACTORY SARS-COV-2 INFECTION
Human pathogenesis
At the onset of the COVID-19 pandemic, as cases spread across the
globe, there was fear that the pathogen, similar to other
coronaviruses, may have neurotropic tendencies. While pulmonary
infection can drive severe disease and death, concern for
neurotropism was sparked after olfactory dysfunction emerged as
a very commonly reported symptom of COVID-19 [2–4], combined
with widespread reports of neurological consequences such as
“brain fog”. As a result, several groups have sought to ascertain
whether SARS-CoV-2 can invade the CNS through the olfactory
nerve. Initially, postmortem samples of human brain and olfactory
tissue provided concerning but uncertain evidence regarding the
occurrence and relevance of SARS-CoV-2 olfactory neuroinvasion,
with the virus occasionally being present in the brain [5–7] of
individuals who had died of COVID-19. As expression of ACE2 and

TMPRSS2, the host proteins needed for SARS-CoV-2 cell entry, was
largely uncharacterized in the olfactory system, it was difficult to
determine whether direct OSN infection was possible. Furthermore,
Nrp1 was suggested as an alternative entry receptor that may
facilitate olfactory infection [8]. Subsequent studies indicated that
while these entry proteins are present in the OM, they are primarily
expressed on sustentacular cells [8–14]. Of note, ACE2 was found to
be expressed more highly in the URT than in the lungs [15].
Infection or inflammation can upregulate ACE2 in the epithelium
[10], and induced ACE2 is expressed as the isoform dACE2, which is
incapable of binding the SARS-CoV-2 spike protein [16]. Additional
analyses of olfactory biopsies have painted a clearer picture of
SARS-CoV-2 infection in the olfactory system (Fig. 1). In humans, the
virus primarily infects the sustentacular cells of the olfactory mucosa
[17–21], which fits with the observed distribution of the ACE2 entry
receptor. These cells are the primary structural cell type in the
olfactory epithelium, providing support for OSNs and their dendritic
projections to detect odors at the air interface. SARS-CoV-2
sustentacular cell infection leads to massive inflammation leading
to sustentacular cell death, loss of epithelial tissue structure, and
subsequent disruption of OSN nuclear architecture and function [17,
21]. Consequently, without structural support, OSNs can be lost, and
the sense of smell is either diminished or completely ablated.
Fortunately, direct SARS-CoV-2 olfactory neuron infection rarely
occurs, and subsequent neuroinvasion seems unlikely. A critical
analysis of studies claiming olfactory neuroinvasion was conducted
by Butowt et al. [20]. In relatively rare cases in which SARS-CoV-2
infection of the CNS is identified [6, 7], olfactory neuroinvasion
should be considered as one possible route of entry, along with
spread across the inflamed blood‒brain barrier and infection of
other neuronal cells in epithelial tissues [20, 22–24].

Animal pathogenesis
Overall, SARS-CoV-2 olfactory pathogenesis varies across animal
models. Mammalian studies have helped to shed light on SARS-
CoV-2 human pathogenesis while also illustrating the dangers of
olfactory neuroinvasion. In some organisms, SARS-CoV-2 invades
the brain via the olfactory nerve (Fig. 2), raising the concern that
future variants may have more neurovirulent tendencies. Indeed,
experiments across mammalian models indicate that olfactotrop-
ism differs depending on the variant of SARS-CoV-2 [24–26].
Because parental SARS-CoV-2 cannot use murine ACE2 for cell

entry, to study SARS-CoV-2 in mice, animals must be engineered
to express human ACE2, or a murine-adapted virus must be used.

Fig. 1 Olfactory immune response to SARS-CoV-2 in Humans. The stages of the immune response to SARS-CoV-2 in the olfactory mucosa.
A SARS-CoV-2 uses ACE2 to enter sustentacular cells and antagonize the induction of interferons. B Infiltrating neutrophils and macrophages
produce inflammatory cytokines. Sustentacular cells are lost, epithelial structure deteriorates, and olfactory sensory neurons undergo
disruption of nuclear architecture and cell death. C After SARS-CoV-2 has been cleared by the immune response, T cells and plasma cells
populate the tissue. Plasma cells produce locally protective mucosal antibody. T cells may contribute to sustained inflammation, preventing
proper epithelial regeneration in some cases and preventing restoration of the sense of smell
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The commonly used K18-hACE2 transgenic mouse was initially
generated as a model for SARS-CoV-1 [27] and uses the human
keratin-18 promoter to artificially express hACE2 in nearly every
epithelial cell, including OSNs and sustentacular cells. As a result,
direct OSN infection and consequent CNS pathology are observed
following intranasal inoculation [28, 29]. Multiple SARS-CoV-2
variants often result in lethal disease [30]. In addition to olfactory
transmucosal neuroinvasion, these mice lose their sense of smell.
This smell loss persists for several weeks following infection and
likely reflects widespread damage to the olfactory epithelium
caused by sustentacular and OSN infection [31]. K18-hACE2 mice
experience extensive olfactory tissue damage characterized by the
“sloughing off” of the epithelial layer, consistent with other
observations of aggressive olfactory infections [28, 32]. Interest-
ingly, aerosolization of SARS-CoV-2 as opposed to intranasal
droplet instillation changes its olfactory pathology in K18-hACE2
mice [33]. Aerosolized inoculation results in lower viral titers in the
nasal turbinates, no viral spread to the olfactory bulb, and greater
viral replication in the lungs and respiratory tract, more closely
mirroring human infection. These mice still develop smell
impairment, suggesting that nasal infection in the absence of
CNS neuroinvasion can still drive olfactory damage and functional
dysosmia [33]. The reasons why aerosolization does not result in
neuroinvasion remain unclear but will be critical to understanding
factors that may heighten neuroinvasive tendencies in other
viruses.
Another mouse model in which hACE2 expression is driven by

the endogenous mouse Ace2 promoter also shows infection of the
olfactory epithelium and fatal neuroinvasion [34]. In this model,
SARS-CoV-2 accesses the brain by infecting olfactory neurons,
resulting in lethal cachexia, hypoxemia, and respiratory failure
independent of lung infection. Selective expression of hACE2 in
the olfactory epithelium and in neurons is sufficient for these
phenotypes, illustrating that SARS-CoV-2 can cause severe illness
even without lower respiratory tract infection [34]. Other murine
models have been used to model different aspects of COVID-19,
including mouse-adapted SARS-CoV-2 strains [31] and mice that
express hACE2 via AAV-controlled expression [6]. Chimeric viruses,
such as VSV-SARS-CoV-2 S, which expresses the SARS-CoV-2 spike
protein on a vesicular stomatitis virus (VSV) backbone, have been
useful for studies of the humoral immune response to SARS-CoV-2
in mice [35, 36].

A more “natural” model of SARS-CoV-2 olfactory neuroinvasion
occurs in Syrian golden hamsters (Fig. 2). Similar to humans, SARS-
CoV-2 was initially observed to infect sustentacular cells in the
olfactory epithelium, causing massive immune infiltration and
desquamation [37, 38]. However, olfactory neurotropism of SARS-
CoV-2 in hamsters seems to be highly dependent on the viral
isolate, as some have been shown to replicate in OSNs without
CNS infection [39, 40], while others infect OSNs and invade the
CNS [41] Some subsequent variants, such as Delta in one study
[25] and D614G in another [42], cause even more OSN infection
and CNS neuroinvasion, with variants such as Omicron having
fewer of these tendencies [25, 42]. More recent data detected
SARS-CoV-2 in the olfactory bulb for all five variants tested, though
infection led to smell loss in only some variants [43]. Consistent
with mouse data [33], this suggests that viral-induced anosmia
may be independent of neuroinvasive capacity [43]. Indeed,
hamsters frequently have lasting olfactory perturbations following
SARS-CoV-2 infection, indicating that they may be useful models
for post-COVID olfactory dysfunction [44, 45].
Nonhuman primates, especially macaques, have been used to test

the immune response to SARS-CoV-2 and vaccine candidates, but
direct examination of the olfactory mucosa has been infrequently
conducted in these animals. SARS-CoV-2 infects the nasal passages
of macaques [46–48] but does not seem to be neuroinvasive,
though some studies have detected low levels of SARS-CoV-2 in
olfactory CNS regions [49, 50]. SARS-CoV-2 infects many wildlife
species and domesticated animal populations [51], but little is
known about olfactory pathogenesis in other mammalian hosts.
However, given the high fatality rate in wildlife populations such as
deer and mink [52, 53], the frequency at which olfactory
neuroinvasion occurs in these species should be investigated.
These animal data suggest that future variants of SARS-CoV-2 (or,

more generally, future pandemic coronaviruses) may have increased
olfactory neurotropism. How can we prepare for an emergent
respiratory pathogen that may also cause catastrophic CNS
infection? We must design vaccines that capably protect the OM.
Critically, these immunizations should focus on generating mucosal
antibodies since OSNs are directly exposed to the airway. We should
also investigate therapeutics that target nasal viral replication
shortly after exposure, as well as drugs that may effectively treat
viral meningitis and encephalitis. Furthermore, SARS-CoV-2 has
long-term neurological and olfactory consequences, for which there
is little clinical recourse. A better understanding of olfactory
immunity in general is needed to address all these challenges. To
these ends, what lessons can we take from the COVID-19
pandemic? Below, we summarize what is known about the immune
response to SARS-CoV-2 in the olfactory system.

Innate immune response
SARS-CoV-2 gains a foothold in the host due to its ability to limit
the early innate immune response [54] (Fig. 1a). By dampening the
interferon (IFN) response in nasal epithelial cells [55, 56], SARS-
CoV-2 is able to replicate quickly, often becoming infectious
before any symptoms are apparent. However, if innate immunity is
activated quickly, it can significantly limit viral dissemination.
Furthermore, one study in macaques showed that mild SARS-CoV-
2 can be cleared from nasal tissue prior to the arrival of T cells,
suggesting that once activated, the innate response can be quite
effective [57]. Studies of human nasal samples indicate that a
poised immune state, with higher basal levels of IFN and PRR
expression, may protect children from severe COVID-19 [58, 59].
Intranasal administration of IFN-based therapeutics, either pro-
phylactically or shortly after infection, has been shown to limit
SARS-CoV-2 replication in nasal passages, but differences between
respiratory and olfactory IFN responses and viral replication have
not been directly measured [60, 61], making it difficult to interpret
whether there may be tissue-specific effects of IFN in the URT.
Once viral-induced inflammation begins to occur, circulating

Fig. 2 Olfactory neuroinvasion in mammalian SARS-CoV-2. In
some animal models, SARS-CoV-2 is able to invade the brain
through the olfactory nerve. The virus infects sustentacular cells and
olfactory sensory neurons in the mucosa, then travels through
olfactory axons, reaching the olfactory bulb of the brain. Immune
cells migrate to both the mucosa and the brain, producing
inflammatory mediators that can both fight the virus and contribute
to destructive neuroinflammation
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immune cells infiltrate the infected OM to combat the virus
(Fig. 1b). These cells are predominantly neutrophils and macro-
phages, and their arrival into the tissue is accompanied by an
increase in cytokine production [21, 31, 37, 38, 62]. These
cytokines likely play important roles in both antiviral effector
mechanisms and wound healing, but some evidence indicates
that neutrophilic inflammation can actually exacerbate tissue
damage and increase OM viral replication [38]. Nasopharyngeal
swabs of humans primarily contain cells of respiratory origin while
neglecting olfactory inflammation, but related studies have
provided evidence to suggest that activated macrophages and
neutrophils are involved in COVID-19 nasal inflammation and
correlate with disease outcomes [56, 63–65]. Overall, neutrophils
and macrophages seem to be important players in the olfactory
COVID innate response, but whether they are productive or
deleterious likely depends on the magnitude of the response and
the specific cytokines expressed by these cells.

Adaptive immune response
An effective adaptive immune response in the olfactory mucosa is
essential to clear SARS-CoV-2 and protect against future reinfec-
tion [66–69]. However, as the COVID-19 pandemic continued, it
became apparent that prior infection or immunization provided
significant protection from severe disease but did not prevent
reinfection [70–73]. This can be partially explained by several
factors, including limited neutralization capacity of anti-Spike
antibodies, emergence of new variants, waning of the initial
immune response, and incomplete herd immunity [74, 75].
However, breakthrough infections commonly present with upper
respiratory symptoms and fewer symptoms in the lower
respiratory tract [70]. Could immune protection in the nasal
passages be incomplete, and if so, is this a phenomenon specific
to the olfactory mucosa?
Several SARS-CoV-2 studies have suggested that blood-borne

antibodies are incapable of protecting the upper respiratory tract
from infection. Passive antibody transfer, while preventing lung
SARS-CoV-2 infection, fails to protect the nasal passages, as virus
can still be detected within nasal washes and within the nasal
turbinates, including olfactory regions [36, 76]. Accordingly, many
vaccines induce strong humoral protection of the lungs while
insufficiently protecting nasal viral replication across animal
models [36, 46, 76–83].
Our recent work has demonstrated why serum antibodies

cannot extend protection to the entirety of the nasal airway [84].
We showed that circulating antibodies readily access and protect
the respiratory mucosa within the nasal passages but are excluded
from entering the olfactory tissue. This is due to the presence of
the blood-olfactory barrier (BOB), which forms a tight endothelial
barrier to segregate the olfactory mucosa from circulation [84]. As
a result, even with high titers of blood-borne antibodies, the
olfactory portions of the URT can be left exposed to infection.
Nonetheless, despite the presence of the BOB, the OM can still

be protected from rechallenge. Our data and that of others have
further shown that plasma cells can home to the OM, residing
within the tissue to directly secrete antibodies to the mucosal
surface, bypassing the BOB [80, 84] (Fig. 1c). Importantly, not all
immunization approaches generate these olfactory plasma cells.
Many conventional adjuvants, such as alum and TLR ligands, are
incapable of driving plasma cell homing [84].
These data are consistent with studies that demonstrate

protection of the upper respiratory tract from SARS-CoV-2
infection (Fig. 1c). Immunization strategies such as nonconven-
tional adjuvants [77, 84], alternative antigen vectors
[79, 80, 85–87], or intranasal administration [78, 88–90] have all
shown promise in providing superior immune protection of the
nasal passages, though careful differential analysis of olfactory and
respiratory tissues has not been performed. The exact signals that
dictate protective OM plasma cell homing and protection remain

to be precisely identified, but the discovery of the BOB has
important implications for the design of vaccines that aim to
protect the olfactory mucosa. In addition, the relationship
between tissue plasma cells and those in other mucosal tissues
or bone marrow should be studied to identify how humoral
immunity may be unique in the OM or reveal broadly applicable
lessons.
Mucosal protection in the nasal turbinates is thought to be

linked with the ability of vaccines to elicit antiviral IgA.
Accordingly, mucosal IgA production is associated with SARS-
CoV-2 protection following mRNA vaccination and prior SARS-
CoV-2 infection [91–96]. Eliciting mucosal IgA is one reason
intranasal vaccination approaches gained intense interest during
the COVID-19 pandemic [97, 98], though parenteral immuniza-
tions have also been shown to induce mucosal antibodies in some
cases [77, 91, 92]. While there are clearly important roles for
secretory IgA in protection against mucosal pathogens, our recent
work has shown that IgA production is not needed to protect the
olfactory mucosa against viral rechallenge [84]. These data
suggest that rather than a specific antibody isotype, the most
important correlate for protecting the olfactory mucosa is local
antibody production. This is in agreement with recent data that
IgG antibodies can be detected in nasal secretions and may play a
role in protection against SARS-CoV-2 [65, 83, 95, 99, 100].
Protection of the OM is not dependent on humoral immunity

alone; T cells also play an important role in defense against COVID-
19. T cells home to the OM following SARS-CoV-2 infection and
remain in the tissue after viral clearance [101–103] (Fig. 1c).
Similarly, after vaccination, antigen-specific CD8+ and CD4+ T cells
can migrate to the nasal passages and reside long term
[87, 103, 104], limiting viral replication upon SARS-CoV-2 challenge
[105]. These T cells have a repertoire that differs from that of
circulating T cells, suggesting an independent and functionally
distinct nasal T-cell response [103]. Similar to the olfactory plasma
cell response, T cells seem to differentially home to the nasal
mucosa in response to infection or vaccination. Determining the
signals that best elicit olfactory T cells is of great importance,
especially for protection against future SARS-CoV-2 variants or
other viruses that may have greater T-cell epitope conservation
than B-cell epitope overlap [106]. While nasal, and especially
olfactory, T cells have not been frequently analyzed, some studies
in animals and humans offer clues for what immunizations may
best stimulate these cells. In humans, infection generates the
largest numbers of nasal T cells [101], particularly in combination
with prior vaccination [103]. Parenteral immunization with mRNA
vaccines, on the other hand, recruits very few T cells to the nasal
mucosa [104], raising doubt as to whether parenteral vaccines can
generate functional T-cell-mediated protection of the olfactory
tissue [107]. As persistent antigen and inflammation in mucosal
sites is known to greatly enhance T-cell recruitment and resident
memory formation [108], it is logical that infection and local nasal
immunization will be most effective at forming a robust nasal
T-cell compartment. Consistent with this, viral-vectored intranasal
vaccination approaches in mice have been shown to induce SARS-
CoV-2-specific nasal T cells [87], and a intranasal vaccination
approach led to a similar result in macaques [109]. However, as
mentioned above for B cells, adjuvant signals and lymph node
interactions can influence the ability of T cells to home to barrier
sites [110]. It is possible that infection, unlike immunization, is also
better able to induce signals that prime T cells for mucosal
homing. Decoding these signals may inform adjuvant approaches
that could improve the ability of parenteral vaccinations to drive
T-cell homing to the olfactory tissue. Last, while olfactory T cells
are likely important for viral clearance and protection during
future infection, they may also have undesirable impacts. Indeed,
evidence suggests that T-cell-driven inflammation can impair
olfactory recovery, emphasizing that the T-cell response in the
olfactory mucosa must be tightly regulated [102].
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Consequences of olfactory infection
In many cases, COVID-19 has long-term effects following the acute
disease stages. In the olfactory system, this most clearly manifests
as intermediate or long-term smell loss [111–113], even following
mild infection [114]. Clinical data show that while many patients
quickly recover their ability to smell, others do not [2, 3], even up
to two years after infection and in the apparent absence of
infectious virus [115–117]. What could explain the differences in
this regenerative capacity? Evidence suggests that sustained
inflammation may prevent olfactory stem cells from repopulating
the tissue with functional neurons [118] (Fig. 1c). While initial OM
destruction is mediated by sustentacular cell death and infiltrating
neutrophils [38], long-term dysosmia coincides with persistent
inflammation from T cells and NK cells that express IFN-γ
accompanied by changes in local myeloid populations. These
immune cells appear to signal to sustentacular cells and olfactory
stem cells, shifting them away from a regenerative state [102].
Host genetics also may impact the propensity for smell loss [119],
and a variety of treatment options are being attempted clinically,
from steroids to olfactory training to platelet-rich plasma
[120–122]. However, given the role of sustained inflammation in
dysosmia, immunomodulatory approaches may also be
considered.
Moreover, sustained inflammation in the olfactory mucosa can

alter the state of the CNS, even if the virus itself never reaches the
brain parenchyma. In postmortem biopsies, COVID-19 patients
showed elevated IFN and inflammatory gene expression in the
olfactory bulb [44]. Consistent with this, patients with olfactory
dysfunction have detectably larger olfactory bulbs measured by
MRI [123, 124]. This prolonged inflammation is likely driven by
local cytokines and resident immune cells, but it remains possible
that as a neuronal tissue, the olfactory mucosa garners a degree of
“immunoprivilege”, allowing it to serve as a long-term viral
reservoir. Supporting this hypothesis, nasal swabs have identified
SARS-CoV-2 RNA in “long-term viral shedders” several months
after the initial infection has subsided [125, 126], and viral antigen
has been reported in the OM of some, but not all, patients long
term [41]. While replicating virus has not been detected in these
patients, it is feasible that low levels of virus may be persistently
harbored in the olfactory mucosa beyond the reach of typical
nasal swabs. Incomplete viral clearance might explain why
inflammation is often sustained in patients with olfactory
dysfunction. As mentioned above, more recent variants of SARS-
CoV-2 are differentially neurotropic and olfactotropic. Measuring
smell loss, either through self-report surveys or through clinical
testing, is often difficult on an individual basis, but population-
level monitoring of anosmia may be useful for predicting future
waves of SARS-CoV-2 and other pandemic viruses [127].
SARS-CoV-2 infection of the olfactory mucosa may contribute to

other symptoms of long COVID. Patients report cognitive
impairment, headache, brain fog, memory impairment, and
anosmia as major symptoms [128–130]. These symptoms are
now broadly included under the term “postacute sequelae of
SARS-CoV-2” (PASC) [131], but early and continued reference to
“NeuroCovid” highlights a core set of neurological consequences
associated with SARS-CoV-2 infection [132, 133]. Animal models in
which SARS-CoV-2 demonstrates olfactory neuroinvasion have
shown inflammation of the olfactory bulb and other brain regions
[42, 44] (Fig. 2). SARS-CoV-2 neuroinvasion can also induce gene
signatures and pathologies associated with neurodegenerative
disorders such as Alzheimer’s disease [134]. Neurological mani-
festations have been implicated in even mild cases of COVID-19
[135], suggesting that the absence of direct neuroinvasion does
not prevent peripheral infection from impacting the CNS. While
vascular inflammation [136] likely contributes to these symptoms,
inflammation of the airway [137, 138], including the olfactory
tissue, may contribute to neurologic disturbances. Accordingly,
some studies have demonstrated olfactory bulb inflammation

without direct neuroinvasion by SARS-CoV-2 [31]. It is important to
note that anosmia itself might contribute to cognitive dysfunction,
as the sense of smell contributes to neurological and psycholo-
gical well-being [139].

OTHER OLFACTOTROPIC VIRAL INFECTIONS
While SARS-CoV-2 has become the most high-profile pathogen
with olfactory implications, many viral pathogens with pandemic
potential have shown olfactotropic tendencies with and without
clear CNS neurovirulence. In this section, we review known major
olfactotropic pathogen threats and consider relevant aspects of
the olfactory mucosal immune response to each.

Other SARS coronaviruses
Other coronaviruses have been shown to infect the olfactory
mucosa, including SARS-CoV-1 [140], which does not penetrate
the CNS in WT mice but is capable of olfactory neuroinvasion in
the K18-hACE2 model [140]. An autopsy study of SARS patients
detected the virus in the CNS, but the nasal mucosa was not
sampled; thus, the method of neuroinvasion was unknown [141].
Human coronavirus (HCoV)-O43 is frequently detected in brain
autopsies of deceased patients [142], and intranasal installation of
HCoV-O43 in WT mice leads to infection of the CNS, seemingly
spreading from the olfactory system [143, 144]. The deadly Middle
East respiratory syndrome (MERS)-CoV outbreak was associated
with numerous neurologic symptoms [145, 146], and a transgenic
mouse model of MERS indicated the possibility of olfactory
involvement in brain infection [147]. In addition, the betacor-
onavirus porcine hemagglutinating encephalomyelitis virus (PHEV)
was recently found to invade the CNS via the olfactory and
trigeminal nerves during intranasal murine infection [148]. PHEV
infection caused inflammatory cell infiltration in the OM and
upregulated expression of several inflammatory genes, such as
Cxcl10 and Ccl5 [148]. Hepatitis viruses are also included in the
family Coronaviridae, and two murine adapted strains, A59 and
JHM, have been shown to invade the brain through the olfactory
mucosa following intranasal challenge [149–151]. JHM causes
extensive damage to the olfactory mucosa and OSN loss [152],
making it a potentially useful model for postviral olfactory
dysfunction. Given the frequency of coronavirus epidemic out-
breaks in this century, more research on their potential for
olfactory neuroinvasion should be conducted. COVID-19 has
caused tremendous loss of human life and wellbeing, yet we are
still not prepared to develop vaccines or therapies against future
olfactotropic and neuroinvasive pandemic coronaviruses.

Influenza virus
Influenza viruses show variable olfactotropism but are likely the
greatest contributor to postviral olfactory dysfunction. Supporting
this, analysis of influenza patients shows an inverse relationship
between vaccination rates and subjective olfactory dysfunction
[153]. Olfactotropism seems to be dependent on the strain, even
within the same family. In mice, influenza B/Malaysia/2506/2004
was found to infect OSNs, but these neurons were able to induce an
antiviral gene expression program to nonlytically clear the virus
before it could reach the CNS [154]. The recombinant R404BP
derivative of influenza A/WSN/33 (H1N1) also infects OSNs, but
apoptosis is induced in infected neurons to prevent spread to the
brain [155]. Influenza A/Puerto Rico/8/34 (H1N1), also known as PR8,
is the most widely used murine influenza model, and while some
studies have reported PR8 antigen in the olfactory bulb of infected
mice [156, 157], PR8 does not productively infect the CNS through
the olfactory route [158, 159]. A related influenza model, H3N2
influenza A subtype X31, seems to infect sustentacular cells but
does not spread to the CNS [160]. This infection causes CD8 T cells
to adopt a resident memory phenotype in the OM where they are
protected from rechallenge. Unlike CD8 T cells in the lung, OM CD8
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T-cell residence is independent of TGF-β, suggesting that different
factors are responsible for recruiting or retaining these cells
between the lung and olfactory compartments. Importantly,
olfactory T cells show limited dissemination to the lungs, protecting
against severe disease. IFNs may be important factors for confining
infection to the nasal passages, as one study found that Type I and
Type III IFNs can prevent murine-adapted influenza A/seal/mass/1-
SC35M/1980 (H7N7) and influenza A/duorn/307/1972 (H3N2) from
reaching the lungs [161]. Ferret studies similarly indicated differing
levels of OM infection between strains, observing no OM infection
for A/H3N2/Netherlands/2008 but moderate OM infection in highly
pathogenic A/H5N1/Indonesia/2005 and high levels of OM replica-
tion in the pandemic H1N1/Netherlands 2009 strain [162]. Hong
Kong/H5N1/97 also replicated to high levels in ferret nasal
turbinates without reaching the brain [163]. Interestingly, a study
comparing nasal and lung infection across multiple influenza strains
in ferrets indicated that only nasal infection allows for airborne
transmission between organisms, while lung infections are not
spread [164]. These data indicate that the URT immune response
can not only prevent viral spread to the lung but also prevent
propagation to other individuals in the population.
Influenza is frequently associated with neurologic symptoms and

sequelae [165–167], and in many cases, influenza infection has
coincided with meningitis or encephalitis [168–173]. Influenza
antigen has been identified in the olfactory nerve of a postmortem
sample, lending credibility to the olfactory route of CNS infection
[174]. As mentioned above, many influenza strains have olfactory
mucosal tropism, and direct olfactory neuroinvasion to the CNS has
been reported in several mammalian influenza models. Influenza A/
WSN/33 (H1N1) was shown to infect OSNs and spread to the
olfactory bulb in immunocompetent mice, and mice lacking an
adaptive immune response eventually died [175]. Highly pathogenic
avian influenza virus A/Indonesia/5/05 (H5N1) is able to bind to OSN
cilia, initiate massive OM infection, and likely uses the olfactory
portal to cause CNS pathology in ferrets [162, 176]. Similarly, the
pandemic Netherlands 2009 strain of H1N1 was able to infect the
olfactory nerves and brains of ferrets. The influenza A/Vietnam/
1203/2004 strain resulted in olfactory neuroinvasion and death in
ferrets, although in mice, it does not seem to use the olfactory nerve
to reach the CNS [163, 177]. In addition, a recent study identified
two H3N8 isolates that infected the ferret brain and caused fatality,
but the route of neuroinvasion was not analyzed [178]. Much
remains to be learned about the viral and host factors that
determine the neuroinvasive proclivities of various influenza strains,
but the serious potential for olfactory mucosal involvement
deserves consideration as new seasonal and pandemic strains
emerge.

CONCLUSIONS
The COVID-19 pandemic has led to massive upheaval worldwide.
Millions of people have lost their lives, and thousands continue to
struggle with the long-term impacts of SARS-CoV-2 infection,
including smell loss. When widespread reports surfaced that SARS-
CoV-2 infection causes rapid onset smell loss, it signaled the
unusual olfactotropic nature of SARS-CoV-2 and foreshadowed the
importance of an overlooked and underserved topic of tissue-
specific immunity.
Olfactotropic viruses such as SARS-CoV-2, both known and

emergent, pose a threat to public health and are an open area of
investigation for immunology. Coronaviruses and influenza viruses,
the two families that pose the greatest threat for future pandemics,
have been shown to variably impact the olfactory mucosa. OM
immunity must be considered for microbes that invade the brain
through the olfactory nerve but also for pathogens that replicate
primarily within the nasal passages. Olfactotropism may be more
common than currently believed, as few studies have examined OM
infection in great detail for many airborne diseases.

What are the major outstanding questions about olfactory
immunology, and what can we do to address these issues? First,
we must overturn the dogma that the nasal passages are a single
homogenous tissue. The nose contains two distinct epithelial
tissues with divergent immune parameters: the respiratory
mucosa and the olfactory mucosa. In both animal and human
studies, we should increase efforts to delineate and distinguish the
two since the immune response fundamentally differs between
them. In conjunction with this concept, we should increase
olfactory biopsy sampling, particularly in cases of upper respira-
tory infection. Conventional nasal swabs only capture respiratory
tissue, and nasal washes either fail to distinguish respiratory from
olfactory tissue or miss the latter entirely. It is likely that many
pathogens other than those mentioned above infect the olfactory
mucosa, and we have yet to recognize them.
Because the nasal passages are frequently the first to encounter

airborne pathogens, the innate immune response in the olfactory
mucosa is critical. As a neuronal tissue, the OM innate response
may have several key differences when compared to the RM,
which is dominated by more classical epithelial cells. Some
evidence suggests that the IFN response in this tissue differs from
that in the rest of the nasal airway. Immune cells in the OM must
balance immune activity with maintaining the neurogenic
potential of the olfactory mucosa while avoiding inflammation
that may impact the CNS. Resident OM myeloid cells are the first
responders to infection, but infiltrating cells likely play important
roles in limiting replication.
Few studies have directly addressed adaptive immunity in the

OM. One newly identified and critically important consideration
for the innate and humoral immune response is the blood-
olfactory barrier (BOB). This structure has yet to be directly
identified in humans and remains to be further characterized in
animal models, but by shaping access of serum proteins to the
olfactory tissues, the BOB places limitations on OM immune
responses. The presence of the BOB emphasizes the importance of
mucosal resident plasma cells that produce locally protective
antibodies, as well as the need for local production of large
molecular weight molecules (such as complement factors). The
dynamics that determine lymphocyte homing, residence, and
retention in the OM remain to be fully described and will be
important for both B and T-cell-mediated immunity.
Mounting evidence exists to link olfactory inflammation and

neurodegenerative disorders, but the molecular and cellular
mediators of such a connection remain to be understood.
Inflammation of the olfactory mucosa may affect proximal brain
structures and contribute to cognitive dysfunction in conditions
such as long COVID. Neuroinvasive pathogens that use the
olfactory nerve to enter the CNS and the subsequent immune
response may breach the barrier to allow progressive infections
and inflammation that eventually culminate in neurodegenerative
disorders such as Alzheimer’s disease.
Vaccines against both respiratory disease and neurotropic

microbes should consider OM protection as critical to their
success, both in limiting disease severity and in halting transmis-
sion between individuals. To achieve high levels of mucosal
antibodies at the olfactory surface, vaccine strategies that induce
olfactory-homing plasma cells should be considered. Whether this
is best achieved by certain adjuvants, particular antigen formula-
tions, intranasal immunization, or prime-pull vaccination remains
to be determined. Similarly, vaccines that induce T cells to reside
in the nasal passages are also important for protection, especially
against viruses that evolve to escape humoral pressure.
Knowledge of therapeutics that address olfactory infection,

both during and after the acute phase of disease, is currently
limited. General immunomodulatory approaches to interfere with
viral replication, such as intranasal administration of IFN or other
cytokines, have been thoroughly investigated only with respect
to respiratory regions of the nasal mucosa. Similarly,
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anti-inflammatory drugs to limit olfactory inflammation may be
appropriate for treatment of anosmia or other conditions, such as
rhinitis. Steroids, olfactory training, and adoptive stem cell
therapies have been investigated for loss of smell [179, 180], but
drugs that target immune cells such as neutrophils, macrophages,
or T cells might provide an alternative approach given the impact
of sustained inflammation. There has been a dramatic increase in
patients with long-term smell loss due to SARS-CoV-2 infection,
and there is an urgent need for therapeutic interventions to help
these individuals [181]. We are just beginning to understand the
role of olfactory immunity in infectious disease, but the future
promises more exciting advances.
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