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Intricacies of TGF-β signaling in Treg and Th17 cell biology
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Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune
tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th
cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and
Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is
therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing
Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular
interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be
proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways
regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the
fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily
contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
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INTRODUCTION
Our immune system, consisting of the innate and adaptive arms,
has evolved to achieve two principal goals to maintain health. One
is to recognize and tolerate entities that are deemed innocuous, or
“self”. The other is to recognize and reject entities that are deemed
nocuous or “nonself”. T cells are fundamental to achieve these
principal goals because of T cells’ ability to recognize, with high
specificity, nearly infinite numbers of antigens derived from an
entity, regardless of “self” or “nonself”. For proper immunity, T cells
must also properly distinguish “self” and “nonself”. Thymic negative
selection eliminates T cells reacting strongly to “self”. Innate
immunity enables a productive T-cell response against “nonself”.
In addition, cytokines play crucial roles in balancing tolerance and
immunity following the productive T-cell response. TGF-β has been
recognized as a chief cytokine of “Yin-Yang” function, as it is critical
for both tolerance and immunity. TGF-β was initially regarded as an
immune regulatory cytokine because it suppresses proinflamma-
tory cytotoxic and Th cells and promotes immunosuppressive Treg
cells. TGF-β was later found to induce Th17 cells of both immune
regulatory and pathogenic functions. It is now clear that TGF-β
regulates T-cell-mediated tolerance and immunity through both
Treg and Th17 cells in a context-dependent manner. Emerging
evidence suggests a broad function for the TGF-β superfamily in
Treg and Th17 cell biology. TGF-β superfamily signaling pathways
crosstalk and interact with a myriad of other factors and pathways
through multilayered mechanisms to translate complex environ-
mental cues into defined and precise responses. Such a property of
the TGF-β superfamily enables intricate control of Treg and Th17 cell

function in a context-dependent manner, highlighting TGF-β’s
fundamental role in immune balance. This article aims to familiarize
readers with the current understanding of the TGF-β superfamily
signaling and the biology of Treg and Th17 cells and to further
discuss the involvement of the TGF-β superfamily in Treg and Th17
cell biology.

TGF-β SUPERFAMILY SIGNALING IS REGULATED AT MULTIPLE
MOLECULAR LEVELS
The TGF-β superfamily consists of over 35 members, including TGF-
βs, Activins, BMPs (bone morphogenetic proteins), Nodal, and GDFs
(growth differentiation factors). These secreted proteins play
pleiotropic roles in controlling the development, homeostasis,
proliferation, differentiation, and functions of diverse cell types in
health and disease [1–7]. In the immune system, TGF-β is the best
studied. Activin [8–11] and BMP [12–17] also contribute to immune
regulation. TGF-β has three homologs: TGF-β1, TGF-β2, and TGF-β3.
While the biochemical properties of TGF-β1, TGF-β2, and TGF-β3 are
similar, their expression pattern and function are tissue- and cell-
type specific. Germline deletion of TGF-β2 and TGF-β3 leads to
embryo lethality [18, 19]. In contrast, while TGF-β1 deletion perturbs
endothelial differentiation and yolk sac hematopoiesis to a certain
extent [20], TGF-β1 knockout mice can be born but succumb to
severe multifocal inflammation shortly after birth [21–23]. Therefore,
the principal function of TGF-β1 is to control hematopoiesis and
immune function, which agrees with its preferential expression in
immune cells when compared to other isoforms [24]. TGF-β1 is
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produced by and regulates the function of both innate immune
cells, including macrophages [25–27] and dendritic cells (DCs)
[28–30], and adaptive immune cells, including T and B cells [31, 32].
To control the immune responses, TGF-β1 mainly targets T cells
because T-cell-specific deletion of TGF-β receptors results in a
systemic, multifocal, and lethal inflammatory disease resembling
the phenotypes of TGF-β1-deficient mice [33–35].

TGF-β activation via complex posttranslational mechanisms
While the transcriptional and translational regulation of the Tgfb
gene is poorly understood, the generation of biologically active TGF-
β at the posttranslational level has been studied extensively [36, 37].
TGF-β is synthesized as a precursor molecule composed of a signal
peptide, a pro-domain (latency-associated-peptide, LAP), and the
mature polypeptide (TGF-β) [36, 37]. After signal peptide removal,
latent LAP-TGF-β dimerizes and forms a large latent complex by
binding covalently to LTBP (large-latent-TGF-β-binding-protein)
through disulfide bonds to be deposited in the extracellular matrix
[36]. Latent LAP-TGF-β can also disulfide-link with membrane-bound
GARP (glycoprotein-A repetitions predominant protein), a protein
expressed on the surface of Treg cells and platelets to position TGF-β
at the cell membrane [38]. Therefore, TGF-β secretion and function
tend to be localized. Unlike TGF-β, Activins and some BMPs are not
secreted as a latent complex. Mature TGF-β only becomes active to
induce signal transduction after being freed from LAP by proteolytic
cleavage via various integrins and proteases and extracellular matrix
proteins in cell-type- and context-dependent manners [39] (Fig. 1).

TGF-β signaling via specific receptors and Smad proteins
Active TGF-β binds to its specific receptor on target cells to signal
and program cellular function (Fig. 1). The signaling mechanisms
of the TGF-β superfamily are conserved in both immune and
nonimmune cells [40–42]. TGF-β receptor (TGFβR) is a transmem-
brane heterotetrametric complex consisting of two copies of
ligand-specific receptor I and receptor II. Upon TGF-β binding,
TGFβRII phosphorylates TGFβRI (also known as ALK (activin
receptor-like kinase)-5) and activates ALK-5’s serine/threonine
domain. Activated ALK-5 phosphorylates and activates receptor-
associated (r)-Smad (suppressor of mothers against decapenta-
plegic) proteins, including r-Smad2 and r-Smad3, and promotes
their disassociation from SARA (Smad anchor for receptor) [43, 44].
Activated r-Smad proteins can then translocate to the nucleus
with or without associating with co-Smad4, a common Smad
protein that can bind to r-Smad proteins activated by TGF-βs,
Activins, and BMPs [42]. Smad-containing complexes, which often
include other transcription factors and epigenetic regulators, bind
to target loci in the genome to regulate gene expression positively
or negatively. In addition to co-Smad4, r-Smad2 and r-Smad3 can
also bind to a nuclear protein called TIF1γ (transcriptional
intermediary factor 1γ), also known as TRIM33 (tripartite motif-
containing 33), to control target gene expression [45]. Like TGF-β,
Activins and BMPs bind to and activate their specific receptors and
r-Smads to control target gene expression. The major type I
receptor for Activin is ALK-4, which activates r-Smad2
and r-Smad3. The major BMP type I receptors are ALK-1, ALK-2,

Fig. 1 TGF-β activation and signaling. Inactive LAP-TGF-β is produced and associates with LTBP in the extracellular matrix or with GARP on the cell
membrane. Active TGF-β is released from LAP-TGF-β by proteases, integrins and low pH. Activated TGF-β binds to its receptor to activate r-Smad
proteins. Activated r-Smad proteins interact with co-Smad4 to translocate into the nucleus to control target gene expression by interacting with
various transcription factors (TFs) and coregulators. i-Smad and SKI/SnoN proteins negatively regulate TGFβR and Smad function. E3-ubiquitin
ligases, including Smurf and Arkadia, target protein degradation to modulate TGF-β signaling. TGF-β binding to its receptor also activates MAP
kinase pathways, including Ras-ERK, PI3K-AKT-mTOR, and TAK1, to program cellular responses independent of Smad pathways
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ALK-3, and ALK-6, which activate r-Smad1, r-Smad5, and r-Smad8.
In addition to binding to ALK-5, TGF-β can bind to ALK1 or ALK2 to
stimulate epithelial cell proliferation and migration [46] and to
activate r-Smad1 and r-Smad5 during epithelial-to-mesenchymal
transition [47]. Therefore, TGF-β can crosstalk with other members
of the same family, especially Activins and BMPs, in a context-
dependent manner, which can be of importance for immune
regulation [8–17]. However, not all Smad proteins promote TGF-β
signaling; inhibitory (i) Smad6 (i-Smad6) and i-Smad7 dampen
TGF-β signaling by associating with type I receptors to prevent
r-Smad activation or to disrupt the association between r-Smad
and co-Smad proteins [7, 42, 48].
As the major transducers of the TGF-β signaling pathway, Smad

proteins have two highly conserved MH (mad homology)
domains. N-terminal MH1 and C-terminal MH2 mediate nuclear
localization and protein‒protein interactions, respectively. There-
fore, the MH1 and MH2 domains are important for Smads to bind
to DNA and other proteins. The binding of Smads to various
genetic loci and proteins enables TGF-β signaling pathways to
crosstalk with a plethora of other signaling pathways to control
diverse cellular functions [42, 48]. r-Smad3 and the co-Smad4
complex interact with c-Jun and c-Fos at the AP1 binding site to
establish crosstalk between the pathways of TGF-β and JNK (c-Jun
N-terminal kinase), a MAPK (mitogen activated protein kinase)
[49]. r-Smads and co-Smad4 cooperate with LEF-1 (lymphoid
enhancer-binding factor 1) and β-catenin in Wnt signaling [50]. In
addition, TGF-β signaling regulates the transcription of HES-1
(hairy and enhancer of split-1) of the Notch pathway through the
direct binding of r-Smad3 to NICD (notch intracellular domain)
[51]. TGF-β signaling also converges with Hedgehog signaling
through the co-Smad4 and GLI (glioma-associated oncogene)
interaction, involving r-Smad2 and histone acetyltransferase PCAF
(p300/CREB-binding protein-associated factor), to activate target
genes [52]. Since the MAPK, Wnt, Notch, and Hedgehog pathways
are important for T-cell functions, it is plausible that TGF-β exerts
broad effects on T cells by corroborating these pathways, which
warrants further study. Smad function can be regulated through
posttranslational mechanisms [53–55]. For example, the MH2
domain of r-Smad can be dephosphorylated by the protein
phosphatase PPM1A (protein phosphatase, Mg2+/Mn2+ depen-
dent, 1 A)/PP2Cα (protein phosphatase-2Cα) [56] and can be
phosphorylated by casein kinase Iγ2 [57] to promote r-Smad
degradation. R-Smad’s linker region can be phosphorylated by
p38 MAPK and ROCK (Rho-associated coiled coil kinase) [58], JNK
[59], and casein kinase Iϵ [60] to positively or negatively regulate
TGF-β responses. In addition, mono- and polyubiquitylation,
sumoylation, acetylation, methylation, and polyadenosine dipho-
sphate (ADP)-ribosylation of Smads regulate Smad function [53].
Notably, r-Smads, co-Smad4, i-Smads, and the activated Smad
complex can be ubiquitinated by various E3 ubiquitin ligases. The
best-known E3 ubiquitin ligases that regulate TGF-β signaling
pathways belong to the HECT (homologous to E6AP C-terminus)
family and Smurf (Smad ubiquitin regulatory factors) family,
including Smurf1 and Smurf2. These E3 ubiquitin ligases target
TGF-β-activated r-Smad2 and r-Smad3 and BMP-activated r-Smad1
and r-Smad5 [61, 62]. r-Smad3 is also targeted by other ubiquitin E3
ligases, including SCF (Skp1-Cullin-F-box) proteins and U-box CHIP
(carboxyl terminus of Hsc70-interacting protein) [63–65]. Nuclear
RNF (ring finger protein) 111, also known as Arkadia, is an E3
ligase that mediates the degradation of i-Smad7, SnoN, and
SKI, which can lead to enhanced TGF-β signaling [66, 67]. In
contrast to polyubiquitination-induced, proteosome-mediated
degradation, monoubiquitylation leads to different functional
outcomes of Smad proteins. The monoubiquitylation of r-Smad2
by Itch (Itchy E3 ubiquitin protein ligase) promotes the stable
interaction between r-Smad2 and TGFβRI. However, the mono-
ubiquitylation of r-Smad3 interferes with Smad3’s ability to bind to
target loci [68, 69].

TGF-β signaling pathways also regulate gene transcription
epigenetically by interacting with chromatin remodelers, histone
modifiers, DNA modifiers, chromatin readers, and long noncoding
RNAs [70]. r-Smad2 interacts with SMARCA4 (SWI/SNF related,
matrix associated, actin dependent regulator of chromatin,
subfamily A, member 4; also known as BRG1) to epigenetically
modify chromatin structures for the expression of a majority of the
TGF-β-targeted genes, except i-Smad7 and SnoN, to achieve a
tightly controlled feedback loop of TGF-β signaling [71]. HAT
(histone acetyltransferase) and HDAC (histone deacetylase) are
importantly involved in TGF-β signaling [72]. r-Smad1, r-Smad2,
r-Smad3, r-Smad5, and co-Smad4 can all recruit HAT or HDAC
through the MH1 domain to control target gene expression in a
context-dependent manner [73–75]. In addition to modifying
histone acetylation, Smad proteins regulate histone methylation.
In response to Nodal stimulation, r-Smad2 and r-Smad3 recruit
histone demethylase JMJD3 (Jumonji domain-containing protein
3) to the promoter region to reduce inhibitory histone markers of
H3K27me3 [76].

TGF-β signaling through Smad-independent pathways
In addition to Smad-dependent pathways, TGF-β receptors can
signal through Smad-independent pathways, including ERK (extra-
cellular signal-regulated kinase), JNK, p38 MAPK, PI3K (phosphati-
dylinositol-3 kinase), AKT, and Rho family GTPases [48, 77] (Fig. 1).
TGF-β-activated ERK signaling requires ShcA. Activated TGFβRI
recruits and phosphorylates ShcA on tyrosine and serine residues.
Phosphorylated ShcA assembles the ShcA-Grb2-SOS complex and
activates Ras for MEK1/2 and ERK signaling [78]. Activated TGFβR
recruits TAK1 (TGF-β activated kinase 1) to further activate the p38
MAPK and JNK pathways. TGF-β stimulates the PI3K-AKT-mTOR
pathway through an indirect association of activated TGFβRI and
TGFβRII with p85, a regulatory unit of PI3K [79]. TGF-β can also
induce the ubiquitination of p85 through TRAF6, resulting in AKT-
mTOR activation [80], which is important for cell proliferation,
metabolism, and migration [81, 82].
TGF-β signaling has evolved to carry out broad functions

through diverse mechanisms by integrating various environmen-
tal stimuli in a cell-type- and context-dependent manner. Since
TGF-β and its signal are central to a myriad of cellular functions
that are vital for development, health, and disease, TGF-β and its
signal must be carefully regulated. Such regulation is achieved by
imposing controls at every step of the signaling process to ensure
proper outcomes in response to the unique combination of stimuli
in a specific niche. In the following sections, we will discuss the
roles of TGF-β signaling in regulating Treg and Th17 cells. We will
first introduce the important aspects of the biology of Treg and
Th17 cells and then discuss in detail how TGF-β signaling
regulates their functions.

TREG CELLS ARE CENTRAL TO IMMUNE TOLERANCE AND
HOMEOSTASIS
Approximately a century ago, the concept that mechanisms must
exist to prevent autoimmunity and to uphold tolerance was
proposed by Paul Ehrlich, albeit in an absolute sense denying the
possibility of autoimmunity. The very existence of autoimmunity
was not accepted until after the 1960s [83]. With the realization
that self-tolerance is not given and can be broken to result in
autoimmune diseases, much effort has been devoted to under-
standing how tolerance is established and maintained. Decades of
investigation have informed us that multiple mechanisms
contribute to tolerance, including clonal selection, anergy induc-
tion, and active immune suppression through cells and cytokines
[84–87]. In the 1970s, the existence of a cell type with active
immune suppression function was proposed [88–90]. It was not
until the 1980s that Sakaguchi et al. identified Lyt-1high,2,3low

T cells enriched for immune-suppressive activity [91, 92]. In 1995, a
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seminal work revealed that CD4+CD25+ cells are markers for a
T-cell population that is highly enriched for immune-suppressive
function [93], allowing for extensive characterization of these cells.
The genetic underpinning of suppressor T cells was revealed in

the early 2000s. Monogenetic loss-of-function mutation of an
X-linked gene called Foxp3 (forkhead box p3) was found to be
accountable for multifocal lymphoproliferation autoimmunity
syndrome in scurfy mice and IPEX (immunodysregulation,
polyendocrinopathy, and enteropathy, X-linked) human patients
[94–97]. It was later found that the Foxp3 gene is predominantly, if
not exclusively, expressed in CD4+CD25+ T cells [98] and that
Foxp3 is sufficient and required for the generation and function of
CD4+CD25+ suppressor T cells [99, 100]. CD4+CD25+ T cells with
Foxp3 expression and immunosuppressive activity are now
defined as regulatory T (Treg) cells. Of note, while Foxp3
expression alone can mark mouse Treg cells with good certainty,
it is often unreliable for human Treg cells, as Foxp3 can be
upregulated, often transiently, in activated human CD4+ T cells
with no suppressive function [101–103]. In this review, we will
focus on discussing mouse Treg cells.

Treg cell classification, generation, and maintenance
Treg cells can develop in the thymus. Thymus-derived Treg cells
are known as tTreg cells. In addition, Treg cells can be generated
extrathymically at peripheral sites. Periphery-generated Treg cells
are known as pTreg cells. Moreover, Treg cells can be induced in
cell culture when CD4+ T cells are activated in the presence of
TGF-β. TGF-β-induced Treg cells in culture are known as iTreg cells
[104, 105]. The expression of Foxp3 is induced in tTreg cells during
thymic development in response to moderately strong TCR
stimulation in conjunction with interleukin-2 (IL-2) produced by
activated self-reactive thymocytes [106–109]. tTreg cells stably
express Foxp3 and other Treg cell markers by extensive epigenetic
modification at relevant genetic loci for systemic self-tolerance
[110]. pTreg cells can be generated from Foxp3– CD4+ T cells that
are exposed to factors, including TGF-β and IL-2, in peripheral
tissues [111, 112]. These pTreg cells accumulate mostly at barrier
sites (such as the intestines) where they respond to innocuous
antigens derived from food or commensal microbes, metabolites,
and environmental factors [113–129]. Non-Treg cells can be
induced to become iTreg cells in culture by TGF-β [130], retinoic
acid [122], and IL-2 [131] following TCR stimulation. While iTreg
cells can express high levels of Foxp3 and are immunosuppressive,
they generally lack the epigenetic modifications of tTreg cells to
stabilize Treg cell phenotypes [132, 133]. In addition to the
populations of Foxp3+ Treg cells defined by the above taxonomy
[105], Treg cells can be further or alternatively categorized into
naive, activated, effector, and memory Treg cells based on the
surface expression of CD62L, CD44, CD127, CD69 and Klrg [134].
Tissue-resident Treg cells have distinct genetic programs from
tTreg cells and bear unique markers, including CD103 and
chemokine receptors, to regulate immune responses in a tissue-
specific manner [134, 135].
Stable Foxp3 expression is important for Treg cell maintenance,

identity, and function [136–139] (Fig. 2). Cytokines are central to
Treg cell homeostasis. γc-dependent cytokines are critical for the
development and homeostasis of tTregs as well as pTreg and iTreg
cells. TGF-β is especially important for inducing pTreg and iTreg
cells [109, 140]. In addition, PI3K-mTOR-AKT, an important
signaling axis regulated by TCR, costimulation, and cytokines,
including TGF-β, plays a pivotal role in the development, function,
and maintenance of Treg cells by regulating immune metabolism
[141, 142] and the expression of genes critical for Foxp3
expression, including FOXOs [143–145]. Mechanisms also exist to
specifically control stable Foxp3 expression independent of its
induction. Three CNSs (conserved noncoding DNA sequences),
namely, CNS1-3, in Foxp3 loci are critical for Foxp3 expression
[146]. While CNS1 and CNS3 are important for TGF-β- and

TCR/CD28-induced Foxp3 expression, respectively, CNS2 is speci-
fically required to stabilize Foxp3 expression in the progeny of
dividing Treg cells. Foxp3, Runx1-Cbfβ, and GATA3 bind to CNS2
to promote stable Foxp3 expression [146–149]. In addition, the
posttranslational modifications of Foxp3 proteins, including
phosphorylation, O-GlcNAcylation, acetylation, ubiquitylation,
and methylation, are important for controlling the functions of
Foxp3 and therefore Treg cells [150, 151]. It is thus predicted that
perturbations in the abovementioned mechanisms through
genetic, pharmacological, and environmental means alter Treg
cell homeostasis and function, with or without affecting the
stability of Foxp3 expression [152–160].

The mechanisms of Treg cell function
Treg cells control adaptive and innate immune responses through
broad mechanisms in both antigen-specific and antigen-
nonspecific manners [161] (Fig. 2). Treg cells carry out their
functions through cytokine modulation, cytolysis, metabolic dis-
ruption, and modulation of DC maturation and function [140, 162].
Treg cells can directly suppress T-cell function by acting as a sink for
IL-2, which is critical for the survival and proliferation of activated
effector T cells [163, 164], as CD25 (IL2Ra) is highly expressed by
Treg cells. Treg cells, especially activated Treg cells, produce large
amounts of TGF-β and IL-10 to suppress both adaptive and innate
immunity [84]. High levels of CTLA-4 (cytotoxic T-lymphocyte
associated protein-4) on the surface of Treg cells can downregulate
costimulatory molecules on antigen-presenting cells (APCs) and
induce tolerogenic DCs [165, 166] to reduce the ability of APCs to
activate non-Treg cells [101, 167]. Treg cells produce elevated levels
of granzymes that are suggested to target APCs for disruption [168].
Treg cells are also found to form more stable interactions with APCs
than non-Treg cells [169, 170] to prevent non-Treg cells from
interacting with APCs. Of note, Foxp3 reprograms Treg cell
metabolism to adapt to low-glucose, high-lactate environments
[171]. This allows Treg cells to utilize different energy resources than
other activated immune cells for better fitness in a specific niche,
especially under inflammatory conditions [172, 173]. Treg cells
migrate to and reside in a specific niche through chemotaxis by
sensing chemokine gradients and expressing relevant chemokine
receptors and integrins [174–176]. Interestingly, the molecular
program of Treg cells seems to be quite flexible and heterogeneous
to allow Treg cells to tailor their function to suppress specific
responses. Treg cells can express T-bet, a Th1 cell differentiation
factor [177], with an enhanced ability to suppress Th1 responses
[178]. Treg cells can express IRF4 (interferon regulatory factor 4), a
Th2 differentiation factor [179], with an enhanced ability to suppress
Th2 responses [180]. Treg cells can express RORγt, a Th17
differentiation factor [181], with an enhanced ability to suppress
Th17 responses [182]. The mechanisms for these observations are
not entirely clear. Two mutually nonexclusive possibilities are that
(1) existing tTreg cells and/or residential Treg cells activated under
Th1-, Th2-, and Th17-skewing conditions adopt respective mole-
cular programs upon activation, as the epigenetic program of Th
differentiation of Treg cells is “poised and flexible” but not “fixed” to
allow such adaptation [157–160, 183, 184]. Adapted Treg cells, likely
antigen specific, become better fitted in a microenvironment with
enhanced suppressive function toward ongoing responses. (2) In a
specific microenvironment with ongoing inflammation, a fraction of
antigen-specific non-Treg cells are converted into pTreg cells by
acquiring Foxp3 expression and suppressive function while
maintaining their Th program acquired before conversion. These
converted pTreg cells will likely have enhanced function toward
ongoing responses. In fact, studies have shown that a fraction of
CD4+ T cells, or pTreg cell precursors, in the intestines express
RORγt before acquiring Foxp3 and Treg cell properties [185, 186].
While the cardinal function of Treg cells is to suppress immune

responses, Treg cells are also important for promoting tissue repair
through both indirect and direct mechanisms. The indirect
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mechanism can be attributed to the suppressive function of Treg
cells [187]. Inflammatory cells, including neutrophils, macro-
phages, and activated conventional T cells, infiltrate into the site
of inflammation and release tissue-damaging cytokines to
adversely affect tissue repair. By suppressing the effector function
of inflammatory cells, Treg cells promote tissue repair indirectly
[187, 188]. More importantly, Treg cells can promote tissue repair
through direct, immune-suppression-independent mechanisms.
During inflammation, activated Treg cells migrate to inflammatory
tissues, a process that requires CCR6, a chemokine receptor
[189–191]. Tissue-infiltrating Treg cells produce amphiregulin, the
epidermal growth factor receptor (EGFR) ligand, to promote tissue
repair in acutely injured skeletal muscle and in acutely influenza
virus-infected lungs [192–194]. In addition, CCN3, a growth
regulatory protein implicated in tissue regeneration, is produced

by Treg cells to promote oligodendrocyte differentiation and
myelination to facilitate CNS tissue regeneration and to ameliorate
neuro-immune pathologies, including EAE and MS [195, 196]. The
myriad of Treg cell functions in immune suppression and tissue
repair enable the broad involvement of Treg cells in health and
disease.

Maintaining immune homeostasis. Immune homeostasis is the
state in which the immune system maintains a balance between
immune activation and immune tolerance. As one of the pillars of
tolerance, proper Treg cell function is central to immune
homeostasis [161, 197, 198]. Dysregulation of Treg cell function
caused by genetic or environmental factors invariantly disrupts
immune homeostasis and tolerance and often causes autoimmu-
nity [199]. Therefore, enhancing Treg cell function can benefit

Fig. 2 TGF-β signaling promotes Treg cell function for tolerance and homeostasis. TGFβR and Smad proteins promote Foxp3 expression and
Treg cell generation by activating CNS1 of the Foxp3 locus. The promoter, CNS2, and CNS3 regions are also important for the induction and
stability of Foxp3 expression by integrating a myriad of upstream signaling pathways, including TCR, CD28, CD25, AHR and various
transcription factors. The Arkadia/SKI/SnoN pathway is important for TGF-β-induced Foxp3 expression. Foxp3-expressing Treg cells suppress
the function of T cells, macrophages, and DCs through TGF-β, IL-10, granzymes, CTLA-4, and CD25. Treg cells promote tissue repair through
CCR6-mediated chemotaxis and amphiregulin- and CCN3-mediated tissue regeneration to maintain tolerance and homeostasis in health and
disease
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disease treatment. For instance, low-dose IL-2 has been used to
treat T1D by specifically promoting Treg cell function [200, 201].
More recently, adoptive Treg cell therapy has gained much
attention for the treatment of autoimmune diseases in an antigen-
specific manner [202–204]. In graft-versus-host or host-versus-
graft diseases that can be viewed as a form of autoimmunity
introduced through transplantation, enhancing Treg cell function
benefits transplant tolerance [205, 206]. During allergic diseases
resulting from tolerance breakdown mostly due to environmental
factors, promoting Treg cell function helps to broadly restrain
hyperactive T cells, eosinophils, mast cells, basophils, antibody
isotype switching, inflammatory DCs, and inflammatory cell
migration to tissues [207].
In addition to preventing and restraining autoimmune inflam-

mation, Treg cells are important for establishing and restoring
homeostasis during host–microorganism interactions. During the
host‒pathogen interaction and pathogen clearance response, the
activation of innate and adaptive immunity by pathogens causes
inflammatory and immune pathology in hosts. Excessive immune
activation often causes pathologies that can be debilitating or
lethal. Proper Treg cell function is important to restore immune
homeostasis during and after pathogen clearance. Treg cell-
mediated suppression is necessary to temper inflammatory
responses during infection and regain immune homeostasis after
infection and pathogen clearance [208–210]. In addition, Treg cells
establish tolerance to obligate microbiota [211]. Treg cells can
achieve this by actively suppressing both innate and adaptive
immunity through antigen-dependent and antigen-independent
mechanisms [162] and by promoting tissue repair [187].
In addition to autoimmune and infection-induced perturbation of

immune homeostasis, the aging process is often associated with a
systemic inflammatory syndrome, also known as inflammaging.
Inflammaging is a naturally occurring inflammation that progresses
with age and contributes to immune senescence, immunological
aging, and age-associated morbidities and mortalities, including
infection, cancer, and autoimmunity in the elderly [212–214]. While
many factors can contribute to inflammaging, reduced Treg cell
function has recently been associated with inflammaging [215].
Aged Treg cells are more severely senesced and less proliferative
than aged non-Treg cells. As a result, aged Treg cells are not optimal
in restraining non-Treg cell function. Treg and non-Treg cell
functions are off-balanced during aging, which may contribute to
inflammaging [215]. Therefore, bolstering Treg cell function will
help to establish, maintain, and restore immune and tissue
homeostasis under normal and pathological conditions.

Establishing tumor tolerance. Tumors develop when the immune
system fails to eradicate tumor cells. One reason for such a failure is
due to the immune-suppressive TME (tumor microenvironment)
established during coevolution of the tumor cells and the host. Treg
cells are enriched in many tumor types and contribute to the TME
and tumor tolerance [216–221]. Treg cells can be induced by self- and
tumor-antigens in the presence of TGF-β, which is often produced by
transformed cells, and can be clonally expanded in the TME
[222, 223], aided by the Treg cells’ unique ability to metabolically
adapt to low-glucose and high-lactate environments in tumors [171].
In addition to inducing Treg cells, tumors attract Treg cells by
secreting chemokines, including CCL1, CCL5, CCL22, and CCL28, as
well as by inducing chemokine receptor expression on Treg cells
[220]. Strategies to target Treg cell generation, recruitment, and
function promise to benefit cancer immunotherapy [224–226].
Treg cells impose critical and broad functions for tolerance,

immune homeostasis, and tissue repair in health and disease. Much
research has been focused on understanding how their generation
and function are controlled. TGF-β emerges as a central regulator of
Treg cell biology. In the following section, we will discuss in detail
how TGF-β signaling controls various aspects of Treg cell biology in
health and disease.

TGF-β CONTROLS TREG CELL GENERATION, HOMEOSTASIS,
AND FUNCTION THROUGH CELL-TYPE AND CONTEXT-
DEPENDENT MECHANISMS
The varying roles of TGF-β in Treg cell generation and
homeostasis under different contexts
The interest in TGF-β in Treg cell function stems from early studies
demonstrating that TGF-β1 deletion led to a multifocal lethal
inflammatory disease early in life in mice in the 1990s [21–23]. The
ensuing studies revealed that TGF-β is an immune regulatory
cytokine that inhibits activation-induced T-cell proliferation and
more potently suppresses Th cell differentiation and effector
function [227]. The relationship between TGF-β and Treg cells
became clear when a seminal study revealed that TGF-β promotes
CD4+CD25- conventional T cells to differentiate into CD4+CD25+

cells upon activation in culture [130]. TGF-β-induced CD4+CD25+

cells are anergic and do not produce Th1 or Th2 cytokines, yet
these cells express Foxp3 and produce TGF-β. Importantly, TGF-β-
induced CD4+CD25+ cells are immunosuppressive and inhibit
antigen-driven CD4+ T-cell expansion during lung inflammation
[130]. Therefore, under culture conditions, TGF-β is sufficient to
induce the generation of Treg cells that phenotypically resemble
Treg cells identified in vivo. A later study using a Foxp3-mRFP
reporter mouse strain found that such an induction occurs by
promoting de novo Foxp3 expression in activated naive CD4+

T cells [132]. One mechanism by which TGF-β promotes Foxp3
expression is through r-Smad3 and NFAT (nuclear factor of
activated T cells) binding to a Foxp3 enhancer region in T cells
[228]. This enhancer region was later found to be the CNS1 region
[146]. Other mechanisms can be through downregulating
inhibitory i-Smad7 at the transcriptional level through Foxp3,
which results in boosted TGF-β signaling through enhancing the
r-Smad3 and co-Smad4 response to promote Foxp3 expression
[229], suggesting that TGF-β promotes iTreg cell generation
through a self-enhancing feedforward mechanism. While naive
T cells are readily converted into Treg cells by TGF-β stimulation
after activation in culture, TGF-β is incapable of converting
predifferentiated Th cells into iTregs in culture [230], which could
be due to the altered molecular context in differentiated Th cells
and reduced TGFβRI expression in activated T cells [231].
Because TGF-β signaling can promote Foxp3 expression and

Treg cell function both in culture and in vivo, whether and how
TGF-β pathways are required for Treg cell function in vivo are
important questions to be addressed. Studies were conducted in
which components of TGF-β signaling pathways in T cells were
deleted under various conditions. In one study, T-cell-specific
knockout of TGFβRII led to reduced Treg cells in the periphery but
not in the thymus [35]. In a mixed bone marrow chimeric mouse
model, where both wild-type and TGFβRII-knockout T cells coexist,
TGFβRII was later found to be required for maintaining Treg cells
in the periphery in a cell-intrinsic manner [232]. Detailed analysis
of T-cell-specific TGFβRI knockout mice revealed that TGFβR is
critical for tTreg cell generation in the thymus [33]. Such a TGF-β-
mediated effect can occur through a direct mechanism because
TGF-β is abundant in the thymus due to thymocyte apoptosis
during thymic selection [233]. The defective tTreg cell generation
due to TGFβRI deletion can be compensated for, however, by the
enhanced IL-2 response of TGFβRI-deficient Treg cells under
inflammatory conditions in these mice [33]. Another mechanism
by which TGFβR is required for tTreg cell generation may be
indirect, through increased death of TGFβR-deficient tTreg cells
under inflammatory conditions [234]. IFN-γ, an inflammatory
cytokine suppressed by TGF-β, impairs the homeostasis of
TGFβR-deficient Treg cells. IFN-γ deletion largely restored the
TGFβRII-deficient Treg cell population in the periphery in a BDC2.5
NOD mouse model [235]. Therefore, under inflammatory condi-
tions, TGF-β promotes Treg cell generation and maintenance in
the thymus and periphery through both direct and indirect
mechanisms.
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The aforementioned findings also provide further understand-
ing of how TGF-β may be involved in Treg cell generation and
homeostasis in the absence of inflammation. Available evidence
suggests that TGFβR is dispensable for the maintenance and
function of existing Treg cells under homeostatic conditions.
Unlike deleting floxed Tgfbr2 alleles in developing thymocytes
using a Cd4-Cre transgene, deleting floxed Tgfbr2 alleles in mature
T cells in the periphery using a distal-Lck-Cre transgene does not
lead to autoimmunity or lymphoproliferation under steady state
[236]. These findings indicate that lymphopenia-driven T-cell
proliferation and inflammation are restrained by TGF-β signaling,
which is important for Treg cell survival. In agreement, Treg cell-
specific deletion of TGFβRII did not lead to systemic inflammation
and did not apparently perturb tTreg cell populations [233, 237]. It
is therefore plausible that TGF-β is critical for tTreg cell generation
and maintenance in a context-dependent manner, depending on
the inflammatory status of the niche. Further studies are
warranted to understand why TGFβR is important for the
generation and maintenance of tTreg cells, especially under
inflammatory conditions.
The finding that TGFβR is required for the generation and

maintenance of Treg cells in a context-dependent manner
prompts the question of what sources of TGF-β are critical for
Treg cell homeostasis in vivo. TGF-β is broadly produced by many
cell types, including immune cells and nonimmune cells, in a
localized manner. Of interest, T cells, especially Treg cells, produce
TGF-β1 in a membrane-bound form [238, 239]. Deletion of TGF-β1
specifically in T cells or in Treg cells does not lead to early-onset
autoimmunity, unlike in T-cell-specific TGFβR knockout mice
[239, 240], although T-cell-specific TGF-β1 knockout mice develop
immunopathology later in life [240]. Nonetheless, Treg cell
homeostasis is not obviously perturbed in these mice. In fact,
the tTreg population is slightly increased, suggesting that
endogenously generated TGF-β1 by tTreg cells restrains tTreg
cell homeostatic proliferation but is dispensable for their
generation or maintenance under noninflammatory, homeostatic
conditions. A study, however, challenges these findings by
showing that the deletion of TGF-β1 in Treg cells led to impaired
Treg cell homeostasis and autoimmune syndrome in mice [241].
Further examination revealed that the findings in this study were
due to cryptic genetic manipulation, which led to undue Treg cell
death [242]. Thus, the notion that TGF-β1 is dispensable for Treg
cell homeostasis stands. Nonetheless, in TGF-β1−/− mice, where
systemic inflammation occurs, TGF-β1 was shown to be important
for Treg cells to be maintained in the periphery and to maintain
the stability of Foxp3 expression [243]. Therefore, it becomes
obvious that TGF-β controls Treg cell generation and homeostasis
in a context- and microenvironment-dependent manner; while
TGF-β is largely dispensable for Treg cell homeostasis under
noninflammatory conditions, inflammation makes Treg cells
sensitive to the loss of TGF-β and its signal for their generation,
maintenance, and stability. The mechanisms underlying such a
dichotomous role of TGF-β in Treg cells need further investigation
to understand how Treg cells can be maintained under
inflammatory conditions when needed most.

Multilayered mechanisms of TGF-β-promoted Treg cell
generation and homeostasis
While TGF-β promotes both tTreg and iTreg cell generation in a
context-dependent manner, TGF-β has differential effects on the
genetic programs of tTreg and iTreg cells. Some of the tTreg
genes, including Il2ra, Socs2, Tnfrsf18, and Ctla4, are not enhanced
by TGF-β [244]. iTreg cells rely on continuous TGF-β signaling to
maintain Foxp3 expression, without which they have a brief life
and reduced Foxp3 stability when compared with Treg cells
isolated in vivo [245]. While r-Smad2 and r-Smad3 are required for
the generation of iTreg cells induced by TGF-β [246, 247], tTreg
cell generation and homeostasis are unperturbed when r-Smad2

and r-Smad3 are deleted [246–249]. In addition to r-Smad2 and r-
Smad3, the Smad-independent, TAK1-dependent TGFβR signaling
pathway contributes to tTreg cell homeostasis [248]. Similarly, T-
cell-specific knockout of co-Smad4 does not obviously affect tTreg
cell generation even when TGFβRII is absent. However, iTreg cell
generation is severely reduced when co-Smad4 is deleted
[232, 250]. T-cell-specific knockout of Arkadia, an E3 ligase that
mediates the degradation of i-Smad7, SKI, and SnoN, which are
inhibitory to TGF-β signaling, led to reduced generation of iTreg
cells in culture and decreased generation of intestinal RORγt+-
Foxp3+ pTreg cells but not the generation of tTreg cells [251]. One
of the mechanisms underlying these findings could be through
co-Smad4, as co-Smad4 is required for iTreg cell generation
[232, 250], and the function of co-Smad4 is suppressed by i-Smad7
[252], SKI, and SnoN [67, 253]. The notion that TGF-β functions
differently in tTreg, pTreg and iTreg cells is further supported by
the findings that CNS1 is critical for iTreg and pTreg cell
generation but can be compensated for by CNS3 in tTreg cells
[146]. It was also reported that mice lacking CNS1 generated tTreg
cells normally but generated fewer pTreg cells in the intestines
[254]. These findings suggest that the generation of tTreg cells
and pTreg and iTreg cells utilize distinct mechanisms for Foxp3
expression: TGF-β signaling is important for pTreg and iTreg cells
but is much less important for tTreg cell generation under
noninflammatory, homeostatic conditions. While TGF-β1 is the
predominant cytokine that can promote iTreg cell generation,
Activin A, another TGF-β superfamily member, can also promote
iTreg cell differentiation in culture by synergizing with TGF-β1 but
not on its own, indicating an interaction between TGF-β and
Activin A in controlling Treg cell function. Activin A does so by
promoting Smad and p38 MAPK signaling initiated by TGF-β
[255, 256]. How important Activin A is in the biology of tTreg and
pTreg cells in vivo remains to be addressed. In addition, whether
other members of the TGF-β superfamily are also involved in Treg
cell generation needs to be elucidated since their signaling can
impact co-Smad4 function, which is critically involved in iTreg cell
generation.

Involvement of TGF-β in Treg cell function
The role for TGF-β in regulating Treg cell function has been under
debate. The first connection between TGF-β and Treg cell
suppressive function was from a study using a T-cell transfer-
induced colitis mouse model. In this study, the suppressive function
of Treg cells was found to be abrogated by anti-TGF-β1 antibodies
[257]. In addition, it was found that Treg cells mediate their
suppressive function through surface-bound TGF-β1 in culture
[258]. Since then, various TGF-β- and TGFβR-deficient (TGF-β1−/−,
TGFβRI−/−, and TGFβRII−/−) mouse models have been generated to
investigate the relationship between Treg cell function and TGF-β.
TGF-β1 was found to be indispensable for Treg cell-mediated
function [240]. TGF-β1−/− Τreg cells failed to suppress the colitis
induced by cotransferred naive wild-type CD4+ T cells, which
displayed enhanced Th1 cell differentiation in recipient mice [240].
However, it was later found that Treg cell-specific knockout of TGF-
β1 did not lead to systemic inflammation and had a negligible effect
on immune homeostasis and EAE development [239]. These
findings suggest that while Treg cell-produced TGF-β is dispensable
for immune homeostasis under steady-state conditions, Treg cell-
produced TGF-β may become important under certain inflamma-
tory conditions. Of interest, a study where TGFβRI is specifically
deleted in Treg cells revealed that TGF-β signaling is important for
certain functions of Treg cells [237]: TGFβRI deletion in Treg cells
leads to reduced T-bet but increased RORγt expression and showed
an increased ability to suppress Th1 cells but reduced control of
Th17 cells in aged mouse lungs and GI tracts and during EAE in
young mice. In addition, TGFβRI is critical for Treg cell recruitment
and retention in the gastrointestinal tract. TGFβRI deletion in Treg
cells leads to reduced expression of the tissue residential protein
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CD103 and colon chemotaxis protein GPR15 and increased
expression of GPR174, a LysoPS (lysophosphatidylserine) receptor
that negatively regulates Treg cell homeostasis [259], limiting
Treg cell accumulation in the intestines [237]. This study reveals a
tissue-specific role of TGF-β signaling in controlling Treg cell
function, emphasizing how TGF-β may control Treg cells in a
microenvironment-dependent manner. While TGF-β promotes the
expression of amphiregulin in fibroblasts [260], whether and how
TGF-β signaling is indeed involved in Treg cell-mediated tissue
repair remains to be addressed.
Collectively, available evidence suggests that TGF-β and related

signals are not always essential for Treg cell generation, home-
ostasis, or function under all circumstances, as initially thought.
Nonetheless, TGF-β and related signals are indeed required for
iTreg cell differentiation in culture and pTreg cell generation
in vivo, and such a requirement becomes inflammation-
dependent for tTreg cells. Therefore, TGF-β and related signals
are critical for Treg cells in a cell-type- and context-dependent
manner (Fig. 2). Much study is needed to fully understand how
TGF-β signaling controls the generation and function of various
Treg cell subsets through genetic and epigenetic mechanisms at
the genomic and proteomic levels with or without crosstalk with
other factors that sense complex environmental cues.

TH17 CELLS ARE BROADLY INVOLVED IN IMMUNE
PATHOGENICITY AND REGULATION
In the 1980s, Mosmann and Coffman’s work established a
paradigm that, in response to different cytokines, naive CD4+

T cells may differentiate de novo into functionally distinct effector
Th cells, namely, IFN-γ-producing Th1 cells and IL-4-producing Th2
cells, to regulate different immune responses [261]. A later study
found that the p40 subunit of IL-12, a Th1 cell differentiating
factor, not only pairs with the p35 subunit to form IL-12 but also
pairs with the p19 subunit to form IL-23 [262]. Therefore,
observations made by targeting p40 may not be entirely
attributed to the function of IL-12 and thus Th1 cells. Indeed, it
was later found that IL-23 but not IL-12 is crucial for the induction
of autoimmune EAE (experimental autoimmune encephalomyeli-
tis) [263]. Subsequent studies revealed that IL-23, but not IL-12,
promoted an IL-17-producing T-cell population, now called Th17
cells, in a p19-dependent manner [264–266]. Th17 cells are distinct
from Th1 cells.

Th17 cell classification, generation, and maintenance
Th17 cells have diverse, sometimes opposite, functions. Th17 cells
promote inflammation and autoimmune diseases, clear pathogens,
and maintain barrier function of the mucosa [267, 268]. Therefore,
Th17 cells can be both pathogenic and nonpathogenic. The
dichotomous function of Th17 cells appears to be dictated by the
microenvironment in which they reside. Nonpathogenic Th17 cells
accumulate in the intestines under homeostasis to maintain mucosal
integrity. Pathogenic Th17 cells can accumulate in the skin, nervous
system, and skeleton during immune pathologies, including
psoriasis, MS (multiple sclerosis), RA (rheumatoid arthritis), and AS
(ankylosing spondylitis) [269]. In addition, intestinal nonpathogenic
Th17 cells have been shown to be stem cell-like precursors for
pathogenic Th17 cells in the spinal cord that cause EAE [270].
Therefore, the generation and maintenance of stem cell-like,
nonpathogenic Th17 cells in vivo appears to depend on the
microenvironment in the intestines, without which Th17 cells
differentiate into pathogenic Th17 cells by default. The functional
dichotomy of Th17 cells can also be observed in Th17 cells
differentiated in culture. The TGF-β1+ IL-6 cytokine combination
induces IL-10-producing Th17 cells with less pathogenic function
[271]. IL-1β+ IL-6+ IL-23, TGF-β+ IL-6+ IL-23, and Activin-A+ IL-6
cytokine combinations induce Th17 cells of potent pathogenic
function with much less IL-10 production [269, 272, 273]. In

agreement, nonpathogenic Th17 cells and pathogenic Th17 cells
have different gene expression patterns. Pathogenic Th17 cells
express proinflammatory genes, including Tbx21, Csf2, Il18r1, Il22,
Il23r, Il33, and Cxcl3. In contrast, nonpathogenic Th17 cells express
high levels of immunomodulatory genes, including Il4, Cd5l, Il9, Il10,
Ccl20, Ahr, and Maf [121, 269, 274, 275] (Fig. 3 A). Interestingly, IL-23
can convert nonpathogenic Th17 cells into pathogenic Th17 cells
[274]. Therefore, the first-identified Th17-driven cytokine, IL-23, is not
only important in promoting Th17 cell proliferation and survival
[276] but also in endowing Th17 cells with pathogenic function.
Single-cell RNA-seq analysis of Th17 cells isolated from EAE-diseased
mice revealed that Il10 and Cd5l are nonpathogenic Th17 cell
markers that are coexpressed with proinflammatory genes, includ-
ing Gpr65, Toso, and Plzp [277, 278]. It therefore appears that
nonpathogenic Th17 cells have “dual intentions”, agreeing with the
observation that these cells have the properties of stem cells and
precursors [270]. In addition, pathogenic and nonpathogenic Th17
cells can be discriminated in EAE by GM-CSF+IFN-γ+CXCR6+IL-17+

and TCF1+SLAMF6+IL-17+, respectively [270].
Cytokines are critical to control, both positively and negatively,

Th17 cell differentiation (Fig. 3B). IFN-γ and IL-4 are dispensable
for Th17 cell differentiation. Instead, they inhibit the development
of Th17 cells [265, 266]. The Th1 cell-polarizing cytokine IL-12
rapidly and irreversibly shuts down the Il17a/f locus in already-
differentiated Th17 cells [275]. TGF-β can promote Foxp3
expression and thus Treg cell generation to suppress Th17 cell
generation [250, 279, 280]. Nonetheless, TGF-β promotes Th17
cells in the absence of Foxp3 in vivo [186]. IL-6 and IL-21 promote
Th17 cell differentiation through STAT3 [268, 281, 282]. IL-21’s
function appears complex and context-dependent because when
IL-21 signaling was blocked, the generation and function of Th17
cells were unaltered [283–285] during EAE but were reduced in
gut inflammation [286]. Although IL-23 is not the differentiation
factor for Th17 cells, productive and sustained Th17 cell responses
only develop in the presence of IL-23, as revealed by studies with
Il23p19−/− and Il23r−/− mice [263]. After the initial induction of
Th17 cells, the availability of IL-23 becomes the limiting factor that
determines whether Th17 cells, especially pathogenic Th17 cells,
are sustained during the inflammatory response [287].
Combined signaling of TGF-β and IL-6/STAT3 and IL-21/STAT3

drives Th17 cell differentiation by promoting the expression of the
transcription factors RORγt and RORα [181, 288–293], which in turn
controls Th17 cell differentiation through shared and distinct
mechanisms [294]. RORα and RORγt bind to the RORE (ROR response
element) in the Il17a/f gene loci [291, 295] to directly promote IL-17
expression. STAT3 also binds directly to and transactivates the Il17
and Il21 promoters [296, 297]. Therefore, STAT3 and RORγt
cooperate for Th17 cell generation. Some loci targeted by STAT3
in Th17 cells are also the targets of STAT5, a signal transducer of IL-2
that inhibits Th17 cell differentiation [298]. On these genetic loci,
STAT3 promotes permissive histone modifications, yet STAT5
promotes repressive histone modifications.
In addition to RORs, other transcription factors are also important

for controlling Th17 cell differentiation. IRF4, which is associated
with the differentiation of the Th1 and Th2 cell subsets [299–301], is
required for the differentiation of Th17 cells through RORγt-
dependent and RORγt-independent mechanisms [302]. ETS1, the
prototype member of the Ets family of transcription factors, inhibits
Th17 cell differentiation by interacting with IL-2/STAT5 signaling
because ETS1 deletion leads to increased Th17 cell differentiation
with reduced IL-2 production and STAT5 signaling [303]. BATF (basic
leucine zipper ATF-like transcription factor) and IRF4 form a complex
to increase chromatin accessibility [304]. STAT3 then starts a
transcriptional program that is eventually turned on by RORγt for
Th17 cell differentiation [304]. Fosl2 limits the plasticity of Th17 cells
[304]. c-Maf is importantly involved in Th17 cell generation in a
context-dependent manner. c-Maf was found to function in a
negative feedback loop to limit Th17 cell differentiation, where it is

J. Wang et al.

1009

Cellular & Molecular Immunology (2023) 20:1002 – 1022



induced by both STAT3 and IRF4 and represses BATF [304, 305].
c-Maf is also critical for the maintenance, expansion, and function of
differentiated Th17 cells by promoting the production of IL-21 [306]
and RORγt [307].
Molecules other than cytokines also regulate Th17 cell

differentiation. The host defense peptide cathelicidin promotes
Th17 cell generation by enhancing AHR (aryl hydrocarbon
receptor) and RORγt expression in a TGF-β1-dependent manner
[308]. Although AHR activated by 2,3,7,8-tetrachlorodibenzo-p-
dioxin induces Treg cells, AHR activated by 6-formylindolo[3,2-b]
carbazole promotes Th17 cells to contribute to EAE [129, 244, 309].
Oxygen sensing appears important for Th17 cell differentiation
because HIF-1 (hypoxia-inducible factor 1), a key metabolic
sensor of oxygen, promotes Th17 cell differentiation through

the direct transactivation of Rorc [310, 311]. Microbial and
metabolic products, including retinoic acid, short-chain fatty acids,
and bile acids, can also regulate Th17 cell differentiation
[120–128, 147, 312]. Acetyl-CoA carboxylase, a key enzyme of de
novo fatty acid synthesis, influences the Th17 and Treg cell
balance through the glycolytic and lipogenic pathways [313].
CD5L, a signature marker of nonpathogenic Th17 cells, regulates
lipidome saturation to restrain Th17 cell pathogenicity [278]. The
active form of vitamin D (1,25-dihydroxyvitamin D3), the main
ligand for the vitamin D receptor, has been found to “severely
impair” the production of IL-17 and IL-17F by Th17 cells [314]. How
cytokines and noncytokines deploy shared and distinct mechan-
isms to regulate Th17 cell differentiation is an important, albeit
complex, question to be fully elucidated.

Fig. 3 TGF-β superfamily signaling controls the biology of Th17 cells with broad functions in health and disease. A Upon culturing in the
presence of different cytokine combinations, activated CD4+ T cells can be differentiated into Th17 (pTh17) cells of high pathogenicity and
Th17 (cTh17) cells of low pathogenicity. cTh17 and pTh17 cells bear different molecular signatures. B By integrating various signaling
pathways, including TCR, interleukins, and AHR, the TGF-β superfamily members TGF-β and Activin A control RORγt expression and function as
well as Il17 expression through Smad and interacting proteins during Th17 cell differentiation. Differentiated Th17 cells regulate immunity,
autoimmunity, cancer, and homeostasis through the secretion of cytokines

J. Wang et al.

1010

Cellular & Molecular Immunology (2023) 20:1002 – 1022



All-encompassing Th17 cell function in health and disease
Contributions to autoimmune and inflammatory disease. Patho-
genic Th17 cells contribute broadly to autoimmune and inflam-
matory diseases [268]. Th17 cells are important in causing the
immune pathologies of diseases, including psoriasis [315], RA
[316], MS [317], IBD (inflammatory bowel disease) [318], asthma
[319, 320], Graves’ disease [321], transplant rejection [322, 323],
and allergy [324]. T cells in human psoriatic skin lesions
predominantly show a Th17 cell phenotype with high CCR6
expression [325]. This is in line with the observation that CCL20/
CCR6 signaling is important for the chemoattraction of inflamma-
tory cells to inflammatory tissues, including the skin. In RA
patients, the expression of TNF, IL-1, and IL-17 is predictive of joint
destruction [316]. Th17 cell-produced RANKL promotes RA by
inducing osteoclastogenesis [326–328], which in turn promotes
cartilage and bone destruction and resorption independently of
TNF and IL-1 [329, 330]. In MS, IL-17 and IL-6 are among the most
highly produced cytokines [317, 331]. In opticospinal forms of MS,
IL-17 and CXCL8 (IL-8), a target of IL-17 and a strong neutrophil
chemoattractant, are elevated and positively associated with
spinal lesions [332]. Th17 cells effectively transmigrate across the
blood‒brain barrier (BBB) and infiltrate into the CNS parenchyma
through IL-17- and IL-22-mediated disruption of BBB tight
junctions [333].

Promotion of pathogen clearance. Th17 cells play important roles
in the pathogen clearance response, especially when type-1 and
type-2 immunity are imbalanced [334]. Th17 cells traffic to the
sites of infection due to high CCR6 expression. Diverse pathogens,
including viruses, bacteria, and fungi-like microbes, can induce
strong Th17 responses [335–352]. In humans, Th17 cells can
recruit B cells through CXCL13 and promote antibody production
by B cells for pathogen clearance [353–356].

Maintenance of tissue and immune homeostasis. In addition to
being pathogenic for tissue damage, Th17 cells also promote tissue
repair and homeostasis. Such an effect of Th17 cells can be mediated
by IL-22, a member of the IL-10 family of cytokines [357], by
promoting the regeneration of epithelial tissues [358]. During
inflammation, Th17 cells migrate to the sites of inflammation via
CCR6 [359, 360] and upregulate IL-22 [361] to limit liver damage in
concanavalin A-induced hepatitis [362] and intestinal damage in T-
cell-induced IBD [363]. Of note, IL-22 has also been found to be a
pathogenic cytokine in psoriasis [364, 365] due to the IL-22-promoted
excessive regeneration of epithelial cells. Thus, IL-22-producing Th17
cells may function in a cell-type- and context-dependent manner for
tissue repair and homeostasis. Th17 cells, especially nonpathogenic
Th17 cells, are important for establishing tolerance to commensal
microbiota for homeostasis by coordinating with Treg cell functions
[303]. In addition, the tissue repair function of Th17 cells will help
maintain the barrier integrity of themucosa to preventmicrobes from
translocating and the barriers from being breached [366–372]. Thus,
Th17 cells in the mucosa are important for homeostasis by both
preventing invasion of microbiota and promoting epithelial barrier
integrity.

Participation in tumor immunity. Th17 cells and their cytokines
are also involved in tumor development and cancer [373–377].
Th17 cells can differentiate into Th1-like Th17 cells (secreting both
IFN-γ and IL-17) with stem cell-like properties to reject tumors
[378, 379]. Compared with other Th cells, Th17 cells are long-lived
with increased self-renewal ability. Such properties of Th17 cells
seem to be due to their unique metabolic programming. Th17
cells utilize mitochondrial oxidative phosphorylation, which
protects Th17 cells from apoptosis while enhancing their
persistence in the periphery and TME [380]. Of note, Th17 cells
have also been found to promote tumor formation induced by
colonic inflammation in mice [381]. Therefore, the functions of

Th17 cells in tumor development are complex and remain to be
further characterized [382].
Th17 cells have both pathogenic and nonpathogenic properties.

This allows Th17 cells to play broad and diverse roles in health and
disease (Fig. 3B). The molecular mechanisms underlying the
generation and function of Th17 cells have been under intensive
investigation since their discovery. We now know that the TGF-β
superfamily plays essential and discrete roles in controlling the
biology of both pathogenic and nonpathogenic Th17 cells. In the
following section, we will discuss in detail how TGF-β signaling
pathways control Th17 cell function.

TGF-β SUPERFAMILY MEMBERS DEPLOY SHARED AND UNIQUE
MECHANISMS TO CONTROL TH17 CELL DIFFERENTIATION
AND FUNCTION
Importance of TGF-β in Th17 cell generation
During early studies defining Th17 cells as a new subset of Th cells
that are proinflammatory and pathogenic and cause autoimmune
neuroinflammation, TGF-β was not implicated in Th17 cell biology.
Surprisingly, a seminal study demonstrated that TGF-β (a well-
known immunosuppressive cytokine), in combination with IL-6,
potently promoted IL-17 production and therefore Th17 cell
differentiation under culture conditions [383–385]. This study
demonstrated that TGF-β can promote inflammation by inducing
IL-17 production [384]. The reconciliation of the seemingly
contradictory roles of TGF-β in promoting both iTreg and Th17
cell differentiation in culture came from a later study showing that
TGF-β balances Th17 and iTreg cell differentiation in a dose- and
cytokine-milieu-dependent manner. In the lamina propria and
during T-cell activation in the presence of TGF-β, Foxp3 and RORγt
are coexpressed in CD4+ T cells and continuously counterbalance
each other [279]. At low concentrations, TGF-β synergizes with IL-6
and IL-21 to favor Th17 differentiation by promoting IL-23R
expression. However, high concentrations of TGF-β repress the
expression of Th17 signatures, including IL-23R and IL-22, but
promote the expression of Foxp3, which inhibits the activity of
RORγt to favor iTreg differentiation [279]. In addition, Foxp3
antagonizes Th17 cell differentiation by inhibiting RORγt and
RORα [250] and by interacting with Runx1 to suppress the Il17
locus [280]. In agreement with the notion that TGF-β stimulation is
compatible with Th17 cell differentiation, it was also found that
TGF-β induces and maintains the expression of IL-6Rα, whose
signaling suppresses Foxp3 expression and activates STAT3 to
induce RORγt expression and Th17 cell differentiation [268, 384].
These findings suggest that while high concentrations of TGF-β
promote Foxp3 expression to restrict the Th17 cell program, TGF-β
nonetheless permits Th17 cell differentiation when IL-6 and IL21
are present. IL-6 and IL21 promote Th17 cell differentiation by
enhancing the Th17 program and antagonizing the Treg cell
program [386].

Diverse functions of TGF-β signaling pathways in Th17 cell
generation
Much effort has been devoted to understanding the molecular
mechanisms through which TGF-β promotes Th17 cell differentia-
tion. One study found that, in a dose-dependent manner, TGF-β
suppresses the IL-6- and IL-21-promoted expression of SOCS3
(suppressor of cytokine signaling 3), a negative feedback inhibitor
of STAT3. Interfering with TGFβR function with a dominant-
negative form of TGFβII or the pharmacological TGFβRI inhibitor
SB505124 leads to increased IL-6-induced SOCS3 expression and
reduced STAT3 activation and thus fewer Th17 cells [387].
While TGF-β signaling is important for Th17 cell differentiation,

the roles of the highly homologous r-Smad2 and r-Smad3 in Th17
cell differentiation seem distinct. r-Smad2 was found to positively
regulate IL-17 expression by interacting with RORγt without
affecting Rorc expression and to be required for Th17 cell
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differentiation [247]. T-cell-specific r-Smad2 knockout mice had
reduced EAE with decreased Th17 cells [247]. In agreement,
another study showed that Smad2 is important for Th17 cell
generation, partly by regulating IL-6R expression [388]. Although
closely related to r-Smad2, r-Smad3 was found to suppress Th17
cell differentiation by interfering with RORγt transcriptional
activity [246]. r-Smad3 deletion led to increased RORγt expression
and increased Th17 cell differentiation both in culture and in vivo,
suggesting that r-Smad3 suppresses Th17 cell differentiation by
interfering with the expression and function of RORγt [246].
Further study revealed additional mechanisms underlying the
different roles of r-Smad2 and r-Smad3 in controlling Th17 cell
differentiation. While r-Smad2 can be phosphorylated by ERK at
the linker region and can associate with STAT3 and p300 as a
coactivator to promote RORγt function, unphosphorylated
r-Smad3 interacts with STAT3 and PIAS3 (protein inhibitor of
activated STAT3) to repress Rorc and IL17a gene expression [389].
In addition, r-Smad2 is associated with TRIM33, a factor required
for Th17 cell differentiation. TRIM33-deficient T cells developed less
severe EAE [390]. TRIM33 associates with both Il17a and Il10 loci in
the presence of r-Smad2 to promote Il17 expression and to suppress
Il10 expression, therefore facilitating pathogenic Th17 cell genera-
tion [390]. The Th17 cell-promoting function of r-Smad2 appears to
dominate r-Smad3’s suppressive function because knocking out
both r-Smad2 and r-Smad3 results in less Th17 cell differentiation
without affecting RORγt expression [249]. These observations were,
however, disputed by a study showing that neither r-Smad2 nor
r-Smad3 alone is required for Th17 cell differentiation in culture and
in EAE [391]. In addition, the combination of r-Smad2 deletion and
r-Smad3 inhibition by a pharmacological inhibitor did not
significantly affect Th17 cell differentiation [391]. Instead, Th17 cell
differentiation mostly depends on the JNK and p38 pathways [391].
The reason for the discrepancies is unclear but could be due to the
different mouse strains and experimental approaches used in these
studies. Nonetheless, these findings suggest that the roles for
r-Smad proteins in Th17 cell differentiation could be nuanced and
complex. Multiple mechanisms are used by Smad proteins to
control RORγt and IL-17 expression at both the protein and gene
levels. The crosstalk between the TGF-β/r-Smad and MAPK signaling
pathways is important for Treg and Th17 cell differentiation. TCR
stimulation-induced MEKK2/MEKK3 and ERK activation leads to the
phosphorylation of the linker regions of r-Smad2 and r-Smad3. Such
phosphorylation suppressed the transactivation function of
r-Smad2 and r-Smad3 in response to TGF-β stimulation [392].
Deletion of both MEKK2 and MEKK3 leads to an enhancement of
TGF-β-promoted Treg and Th17 cell differentiation in vitro and
in vivo [392]. Interestingly, MEKK2 and MEKK3 double knockout
mice developed more severe EAE than wild-type mice, suggesting
that MEKK2 and MEKK3 are preferentially required to dampen the
TGF-β-controlled Th17 program [392]. The function of co-Smad4 in
T cells was initially perplexing. In contrast to what was predicted for
a protein that is central to TGFβR signaling, T-cell-specific depletion
of co-Smad4 did not yield autoimmune symptoms or apparent
T-cell activation as in T-cell-specific TGFβR knockout mice [250, 393].
Instead, T-cell-specific co-Smad4 deletion led to spontaneous
development of cancer with increased Th17 cell differentiation
[250, 393], suggesting that Smad4 has functions beyond promoting
TGF-β signaling in T cells. A later study found that co-Smad4
depletion rescued lethal autoimmune disease in T-cell-specific
TGFβRΙΙ-deficient mice [232], suggesting that co-Smad4 counter-
balances TGFβR signaling. Indeed, closer examination revealed that
co-Smad4-deficient T cells readily differentiated into Th17 cells in
the presence of IL-6 and IL-21 in culture even when TGF-β signaling
was abrogated, although TGF-β+ IL-6-promoted Th17 cell differ-
entiation was not obviously affected [250, 253, 394, 395]. In
addition, during EAE development, although TGFβRII-deficient
T cells fail to differentiate into Th17 cells, simultaneous knockout
of co-Smad4 fully restores Th17 cell differentiation [253]. These

findings suggest that co-Smad4 restrains Th17 cell differentiation in
the absence of TGF-β stimulation. Without TGF-β, SKI is critical for
the co-Smad4-mediated effects by associating with co-Smad4 on
the Rorc locus but not the Il17 locus and recruiting HDAC to the Rorc
locus to restrain Rorc expression. Because SKI is very sensitive to
TGF-β-induced protein degradation [396–398], low concentrations
of TGF-β trigger SKI degradation and thus alleviate SKI/co-Smad4-
complex-mediated suppression of Rorc expression [253]. Therefore,
an important mechanism through which TGF-β promotes Th17 cell
differentiation is to disrupt the SKI/co-Smad4 suppressive complex
to allow Rorc expression and Th17 cell differentiation. Such a
function of co-Smad4 appears to be context dependent. While co-
Smad4 is indeed required to suppress Th17 cell differentiation
under normal conditions, co-Smad4 is also required to promote
pathogenic Th17 cell differentiation under febrile temperature
[395]. High temperature promotes the heat shock response and the
sumoylation of co-Smad4 and its nuclear translocation. Interest-
ingly, febrile temperature induced co-Smad4 binding to the Il17 loci
[395]. These findings suggest that Smad proteins control Th17 cell
differentiation in a context-dependent manner by integrating
various environmental cues to positively and negatively regulate
Th17 cell differentiation. Protein‒protein interactions have emerged
as an important way to control Smad function. It would be of
interest to further investigate how the interactomes of r-Smad2, r-
Smad3, and co-Smad4 are dynamically regulated during Th17 cell
differentiation under various conditions to identify critical factors for
Th17 cell differentiation.

Distinct roles for TGF-β superfamily members in regulating
pathogenic and nonpathogenic functions of Th17 cells
Much effort has been devoted to understanding how TGF-β1+ IL-
6 induces Th17 cells with low pathogenic function. Recently, we
have seen increasing interest in understanding how pathogenic
Th17 cell function is controlled due to its critical role in causing
pathology [273, 274, 399–405]. TGF-β1+ IL-6-induced Th17 cells
upregulate TGF-β3 in response to IL-23 to promote the
pathogenic program, suggesting that TGF-β3 signaling can endow
and enhance the pathogenic program of differentiating and
differentiated Th17 cells [274]. However, whether TGF-β signaling
is indeed involved in the de novo generation of pathogenic Th17
cells remains uncertain. In fact, a study suggests that TGF-β
signaling is dispensable for the generation of pathogenic Th17
cells, particularly those differentiated by IL-6+ IL-1β+ IL-23 [272].
Nonetheless, SKI degradation, a particularly sensitive readout for
TGF-β signaling to allow Th17 cell differentiation [253], occurred
under IL-6+ IL-1β+ IL-23-polarizing conditions. Such SKI degra-
dation was found to not be due to TGF-β signaling but rather to
Activin A, a TGF-β superfamily member that is highly induced by
IL-6+ IL-1β+ IL-23. Activin A+ IL-6 was shown to be sufficient to
drive the differentiation of pathogenic Th17 cells that resemble IL-
6+ IL-1β+ IL-23-induced pathogenic Th17 cells. In addition,
Activin A and its specific receptor I (ALK4) are critical for the
generation of pathogenic Th17 cells to induce EAE. Furthermore,
while TGF-β/ALK-5 signaling potently suppresses ERK activation,
which is important for the pathogenic program of Th17 cells,
Activin A/ALK4 signaling does not after ERK activation [406].
Therefore, different TGF-β superfamily members contribute to the
generation and reinforcement of nonpathogenic and pathogenic
Th17 cells through distinct and shared mechanisms. SKI sup-
presses the differentiation of both nonpathogenic and pathogenic
Th17 cells. Ectopic SKI expression inhibits the generation of Th17
cells, especially pathogenic Th17 cells, both in culture and in vivo
during EAE development [407]. SKI controls Th17 cell differentia-
tion in a dose-dependent manner. Moderate stabilization of SKI in
Arkadia-deficient T cells did not lead to substantial inhibition of
Th17 cell differentiation [251], as certain levels of SKI expression
can be tolerated for Th17 cell differentiation [406]. It is also
possible that Arkadia knockout results in more complex effects,
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including the stabilization of the SnoN and Smad proteins and
other uncharacterized targets that may affect co-Smad4 function,
rather than only stabilizing the SKI protein [251].

Localized TGF-β production for Th17 cell generation and
function
While both TGF-β and Activin A can be produced by various cell
types, T-cell-generated TGF-β and Activin A play nonredundant
roles in Th17 cell function. Both TGF-β1 and Activin A produced
by Th17 effector T cells are important for Th17 cells [239, 406].
In agreement, TGF-β1 is required for Th17 cell stability and
for maintaining the nonpathogenic program. A study using IL-
17-producing cell-specific TGFβ1 knockout and fate-mapping
systems (Tgfb1fl/flIl17aCreR26YFP) revealed that autocrine TGFβ1 in
Th17 cells maintains their stability by repressing the expression
of IL-12Rβ2 and IL-27Rα [408]. TGF-β1-deficient Th17 cells tend
to produce IFN-γ and become more pathogenic, exacerbating
tissue inflammation in an adoptive EAE transfer model [408].
The aforementioned studies highlight the important functions

of different TGF-β superfamily members and their signaling in
controlling Th17 cell generation and function. However, whether
Th17 cells can possibly be generated independent of TGF-β
signaling remains incompletely answered. In mice doubly
deficient in STAT6 and T-bet, Th17 cells are readily induced by
IL-6 when TGFβRII signaling is attenuated by the expression of a
dominant negative form of TGFβRII [409]. The purported
mechanism was that failed Th1 and Th2 cell differentiation of
STAT4/T-bet-double-knockout CD4+ T cells led to Th17 cell
differentiation by default in the presence of IL-6. This posited
mechanism is questionable because blocking Th1 and Th2 cell
differentiation by other means does not result in Th17 cell
differentiation by IL-6 stimulation alone. It would be interesting to
assess whether Activin A-related signaling contributes to these
observations. The abovementioned studies also highlight that
Th17 cells are functionally heterogeneous with varying cytokine
production profiles depending on the microenvironment in
which they reside. Such high heterogeneity of Th17 cells could
be due to different differentiation trajectories or functional
plasticity, allowing dynamic adaptation to the changing environ-
ment. While TGF-β superfamily cytokine signaling is clearly
instrumental in the generation and function of Th17 cells (Fig. 3B),
the molecular underpinnings (especially the crosstalk with the
pathways that sense environmental cues, including oxygen,
metabolites, and chemicals) of TGF-β-controlled Th17 cell
generation, maintenance, and function remain poorly defined
and warrant further investigation.
The above discussion suggests that although Treg and Th17

cells are seemingly distinct cell types, their differentiation
programs are related and share common pathways, especially
the TGF-β pathway. In fact, conversion between Treg and Th17
cells can occur. An earlier study found that IL-6 abrogates Treg
cell suppressive activity [386]. IL-6 was later shown to convert
established Treg cells into Th17-like cells [250, 410]. The
downregulation of Foxp3, which leads to the instability and
plasticity of established Treg cells, is important to allow Treg-to-
Th17 cell conversion because high levels of Foxp3 suppress
RORγt to restrain Th17 cell differentiation [250, 279]. The
attenuation and downregulation of Foxp3 expression are often
associated with Th17 cell conversion of established Treg cells
during immune pathologies [411], including type I diabetes,
systemic autoimmunity, autoimmune arthritis, and neuroinflam-
mation [149, 152, 412, 413]. Of note, while high levels of
Foxp3 suppress Th17 cell differentiation [279], Foxp3 and IL-17
are not mutually exclusive, as cells expressing both can be found
in vitro and in vivo [186, 250, 410]. How is TGF-β involved in
Treg-Th17 conversion? Current evidence suggests that the
strength of TGF-β signaling is important. High doses of TGF-β
promote high levels of Foxp3 to favor Treg cell differentiation

over Th17 cell differentiation even in the presence of IL-6
[253, 279]. In addition, while Activin-A promotes Th17 cell
differentiation to promote inflammation [269], it does not
promote Treg cell differentiation on its own [414], suggesting
a potential role for Activin-A favoring Th17 cells over Treg cells.
Therefore, it is reasonable to believe that strong TGF-β signaling
will favor not only Treg cell generation but also their stability for
immune homeostasis and suppression. Weak TGF-β and/or other
TGF-β superfamily member signaling will permit Th17 cell
differentiation and/or Treg-to-Th17 transdifferentiation under
inflammatory conditions. What signaling molecules sense and
interpret the strong vs. weak TGF-β signaling for Treg cell
stability and Treg-Th17 cell transdifferentiation and how other
TGF-β superfamily members are involved in Treg cell stability
and Treg-Th17 cell transdifferentiation warrant further investiga-
tion to help understand the etiology and to develop treatments
for immune diseases.

CONCLUDING REMARKS
The central canon for TGF-β’s function in Treg and Th17 cells
is to balance the immune response in a context- and
microenvironment-dependent manner through complex signal-
ing pathways and molecular mechanisms. From an operational
perspective, TGF-β signaling in Treg and Th17 cells must
be intricate, sometimes nuanced, to support its ability to
integrate and respond to a plethora of environmental cues
through dose- and context-dependent mechanisms. This ability
of TGF-β signaling allows T cells to correctly interpret cellular
and molecular contexts and mount defined, precise responses in
a malleable way to adapt to the ever-changing microenviron-
ment. TGF-β accomplishes these daunting tasks by wiring and
rewiring cell-intrinsic pathways involving different cellular
factors in varying combinations. When studying TGF-β signaling
and response, cellular and molecular contexts matter. Future
research efforts should focus on revealing how TGF-β signaling
components control T-cell responses in cell-type- and niche-
specific contexts that are meaningful for immunity and diseases.
To fully appreciate the intricate, context-dependent roles of

TGF-β signaling in T-cell function and to understand some of the
seemingly conflicting observations, it is important to consider the
following: First, the source of TGF-βs can be diverse and
redundant, as TGF-βs with similar biochemical properties can be
produced by broad cell types in secreted or membrane-bound
forms. Therefore, the cell types involved and their physical
position relative to Treg and Th17 cells in a specific niche should
be considered. Second, to signal, mature TGF-β needs to be freed
from LAP, a process that involves complex regulation. Activating
TGF-β involves various mechanisms, including acidification,
proteases, plasmin, matrix metalloproteases, thrombospondin-1,
and integrins [415, 416]. Conditions, such as inflammation, that
mobilize these mechanisms will impact the availability of active
TGF-β and influence the reliance and responsiveness of T cells to
TGF-β to achieve balanced responses. Third, under complex
conditions in the microenvironment in vivo, other TGF-β super-
family members may also be involved in TGF-β signaling in Treg
and Th17 cells in a context-dependent manner. TGF-β superfamily
members can cooperate through shared or unique components
and pathways to mitigate or exacerbate some of the effects
observed under various settings. Finally, due to broad crosstalk
between TGF-β signaling pathways and other signaling pathways,
transcription factors, and epigenetic regulators, the “molecular
contexts” in a cell will likely substantially affect the signaling and
functional outputs of TGF-β stimulation. Therefore, it is important
to comprehensively understand these “molecular contexts” using
multiomics approaches, ideally at the single-cell level, to fully
appreciate how intricately TGF-β signaling functions in a context-
dependent fashion.
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