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Tumor-specific memory CD8+ T cells are strictly resident in
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The functional exhaustion of CD8+ T cells represents a funda-
mental hallmark of chronic viral infection and cancer and, in both
scenarios, is driven by prolonged exposure to persistent cognate
antigens in the context of an immunoinhibitory microenviron-
ment. Exhausted CD8+ T cells upregulate the expression of a wide
diversity of coinhibitory immunoreceptors (also referred to as
immune checkpoint receptors), such as PD-1, Tim-3, LAG-3, and
TIGIT. Concomitantly, exhausted CD8+ T cells lose their potential
to differentiate into functional memory cells and are characterized
by hierarchical loss of effector function, leading to compromised
tumor control and viral eradication [1, 2].
Exhausted CD8+ T cells in the tumor microenvironment (TME)

are highly heterogeneous, mainly consisting of subsets of TCF-1-
expressing precursors of exhausted T (TPEX) cells and Tim-3-
expressing terminally differentiated exhausted CD8+ T (TEX) cells
[3, 4]. Immune checkpoint receptor blockade (ICB) therapies, such
as those that block the PD-1/PD-L1 pathway, result in remarkable
remission in a subset of cancer patients, with these effects
generally attributed to the reversal of CD8+ T-cell exhaustion in
the TME [5–7]. However, accumulating evidence highlights the
potential role of systemic CD8+ T-cell responses in the control of
tumor progression upon PD-1/PD-L1 ICB treatment, especially in
tumor-draining lymph nodes (TdLNs) [8–14]. Recently, we
reported on tumor-specific memory CD8+ T cells in TdLNs
(TdLN-TTSM) of both mice tumor models and human hepatocel-
lular carcinoma patients and showed that TdLN-TTSM cells serve as
primary responders to PD-1/PD-L1 ICB and exhibit superior tumor
repression to that of TCF-1+ TPEX cells [15].
TdLN-TTSM cells were comparable to conventional memory

T cells (TMEM) generated during acute viral infection in several
aspects, including antigen-independent self-renewal and prolif-
eration burst upon antigen reencounter. TTSM cells express the
lymphoid homing molecule L-selectin (CD62L) and C-C chemokine
receptor 7 (CCR7). Moreover, we noticed that genes associated
with T-cell extravasation and chemotaxis were less enriched in
TdLN-derived P14 cells than in TMEM P14 cells, indicating the
potentially distinct circulating features between these two subsets
[15]. TMEM cells can patrol between lymphoid organs, blood and
peripheral tissues, while during chronic viral infection, TPEX cells
are reported to largely reside in lymphoid tissues, with a very

limited population in infected peripheral tissues [16]. Importantly,
the migratory pattern of TTSM cells derived from TdLNs during
tumorigenesis has not yet been elucidated. Thus, herein, we
sought to dissect the migratory pattern of TTSM cells.
First, to precisely trace the immune response of TdLN-TTSM cells

during tumorigenesis, C57BL/6 mice (hereafter referred to as B6
mice) were first adoptively transferred with naive Tcf7 (encoding
TCF-1 protein)-GFP P14 cells (CD44−GFP+, GFP indicating TCF-1
expression) harboring transgenic TCRs specific to the H-2Db

Gp33-41 epitope from Tcf7-GFP knock-in reporter P14 mice, and
then these B6 mice were subcutaneously inoculated with B16.F10
melanoma cells expressing the LCMV glycoprotein as a surrogate
neoantigen (hereafter referred to as B16.Gp) as we previously
reported [15]. Fourteen days later, TdLN-TTSM P14 cells were sorted
and retransferred into tumor-bearing recipients at Day 8 post
B16.Gp inoculation (Supplementary Fig. S1a, b). Then, activated
P14 cells derived from different tissues were analyzed. Eight days
later, we noticed that CD44+P14 cells were more abundant in
TdLNs than in other compartments of tumor-bearing mice (Fig. 1a,
upper panel). Furthermore, we found that TCF1+TOX− TTSM P14
cells were more enriched in TdLNs than in other tissues, including
those of the TME (Fig. 1a, lower panel). In addition, we noted that
the majority of TTSM cells in TdLNs were CD62L positive but
negative for sphingosine-1-phosphate receptor-1 (S1PR1) expres-
sion; notably, S1PR1 mediates lymphocyte egress from LNs [17]. A
fraction of TTSM cells also expressed CD69 and CD103 (Fig. 1b),
which are known markers for tissue resident memory T cells [18].
The unique expression pattern of these molecules may guarantee
their retention within dLNs. Thus, we hypothesized that TTSM cells
are likely resident in TdLNs.
To test this hypothesis, we next investigated the in vivo

migratory properties of TTSM cells by using a parabiotic system.
TTSM cells (CD45.1+CD45.2−CD44+PD-1lowGFP+) were first sorted
as previously reported [15] and transferred into tumor-bearing B6
recipients (CD45.1−CD45.2+). After resting for 3 days, the
vasculature of B16.Gp tumor-bearing mice (adoptively transferred
with TTSM P14 cells on Day 6 post tumor implantation) were
conjoined to those of tumor-matched mice (without P14 cell
adoptive transfer) via parabiosis surgery. As a control, we
performed the same surgery using LCMV-Arm+-acutely infected
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Fig. 1 The in vivo distribution and migration pattern of tumor-specific memory CD8+ T cells during tumorigenesis. a Statistical summary of
the proportions of CD45.1+CD44+ P14 cells (upper panel) and CD45.1+CD44+TCF1+TOX− TTSM cells (lower panel) in gated live lymphocytes
from each compartment. BM bone marrow, nLNs nondraining lymph nodes, including axillary lymph nodes and submaxillary lymph nodes,
TdLNs tumor-draining lymph nodes. n ≥ 4/group. b Flow cytometry analyses of TOX expression versus the indicated markers in
CD45.1+CD44+TCF1+ donor P14 cells in TdLNs. c Experimental design of the parabiotic system. d Representative flow-cytometry plots of
donor TTSM-derived CD44+ P14 cells in the TME, TdLNs, and PBMCs of the donor (D) and host/recipient (R) tumor-bearing parabionts (right
panel). Donor-derived CD44+ P14 cells in the spleens, TdLNs, and PBMCs of donor- and recipient-infected parabionts are listed in the left
panel. Numbers are frequencies. e The ratio of donor-derived CD44+ P14 cells from each indicated compartment in the recipient relative to
the donor is summarized. f Flow-cytometry analyses of GFP (indicating TCF-1 expression) versus indicated exhaustion and effector cell-
associated marker expression in CD45.1+CD44+ donor P14 cells from different compartments. n= 3/group. *p < 0.05 versus control, n.s.
stands for not significant, paired two-tailed Student’s t test (d). Data are representative of 2 independent experiments (mean ± SEM)
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mice (P14 cells adoptively transferred) in which acute infection
(>60 days) had cleared. Then, we tested whether donor P14 cells
equilibrated between the parabionts 20 days later in the
peripheral blood (PBMC), spleen (Arm+ infection), TME, and
inguinal draining lymph node (Fig. 1c). As expected, virus-
specific memory P14 cells established equilibrium between the
two acutely infected conjoined parabionts in the spleen,
peripheral blood, and inguinal lymph nodes, consistent with a
previous report [16].
Notably, for tumor-bearing parabionts, donor (D)-derived P14

cells, including the TTSM subset, were nearly undetectable in the
TdLNs of recipient mice (R) (Fig. 1d, e). In contrast, donor-derived
P14 cells reached equilibrium between parabionts in the tumor
mass. Furthermore, we noticed that only a small fraction of
donor-derived antigen-specific CD8+ T cells were recovered
from peripheral blood, although the proportions seemed
comparable between parabionts (Fig. 1d, e). This small popula-
tion of antigen-specific CD8+ T cells in peripheral blood
reminded us that during chronic LCMV infection (Cl13 infection),
the frequency of tetramer-positive CD8+ T cells in the blood is
very low compared to that in the spleen, and the majority of
these circulating virus-specific CD8+ T cells in chronically
infected mice were CD101−Tim-3+ CX3CR1+ transitory cells
[16, 19–22]. To further characterize the progeny cells in the
blood, we compared the phenotype of PBMC- and tumor-
derived CD44+P14 cells from the host parabiont with those from
the TdLNs of donor mice. Consistent with published data [15],
antigen-specific CD8+ T cells in TdLNs consisted of TCF1+TOX−

TTSM cells and a small proportion of TCF1+TOX+ TPEX cells. In
contrast, in PBMCs, a substantial proportion (~70%) of TTSM-
derived P14 cells differentiated into TCF1-negative cells and
upregulated the expression of exhaustion-associated markers,
including PD-1, TOX, and CD39 (Fig. 1f). Furthermore, TTSM-
derived P14 cells in PBMCs had highly increased expression
levels of the chemokine receptor CX3CR1 and effector molecules
KLRG1 and granzyme B, while these markers were barely
expressed by TCF-1-expressing TTSM cells in the draining lymph
nodes (Fig. 1f), suggesting that antigen-specific CD8+ T cells in
the peripheral blood were heterogeneous and in a transitory
differentiation stage between progenitor and terminal
exhausted CD8+ T cells. Additionally, TTSM-derived P14 cells
primarily differentiated into TCF1-negative cells in the TME, with
high levels of PD-1, TOX, Tim3, and CD39 expression (Supple-
mentary Fig. S1c).
Collectively, our study delineated the unique tissue distribu-

tion and different migratory patterns of TTSM and TMEM cells.
TdLN-TTSM cells were predominantly found in TdLNs and seemed
to be resident at these sites. Importantly, this study indicates
that TdLNs might provide a unique niche in facilitating the
differentiation and residency of TdLN-TTSM cells. However, more
efforts are needed to further explore this possibility and examine
how such lymphoid niches are generated and operated during
tumorigenesis.
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