Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP1-regulated reciprocal differentiation of Th17 cells and Treg cells by deubiquitinating and stabilizing TAZ

Abstract

The balance between inflammatory T helper type 17 (Th17) and immunosuppressive regulatory T (Treg) cells is critical for maintaining immune homeostasis in the human body and is tightly regulated under healthy conditions. An increasing number of studies have reported that deubiquitinases (DUBs) play a vital role in regulating Th17- and Treg-cell differentiation. However, the biological functions of only a small fraction of DUBs in Th17- and Treg-cell differentiation are well defined. In this study, we identified ubiquitin-specific peptidase 1 (USP1) as a vital regulator of CD4+ T-cell differentiation. USP1 promoted Th17-cell differentiation but attenuated Treg-cell differentiation, thereby promoting the development of inflammatory diseases. Mechanistically, USP1 in CD4+ T cells enhanced the activity of RORĪ³t but promoted the proteasomal degradation of Foxp3 through deubiquitination and stabilization of TAZ in vitro and in vivo. Notably, ML323, a specific inhibitor of the USP1/UAF1 deubiquitinase complex, inhibited Th17-cell differentiation and promoted Treg-cell differentiation in vitro and in vivo, indicating that ML323 might be a promising candidate for the treatment of diseases associated with an imbalance between Th17 and Treg cells. Our study highlights the critical role of USP1 in regulating adaptive immune responses and suggests that USP1 might be a drug target for the treatment of diseases associated with an imbalance between Th17 and Treg cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kurup S, Butler N, Harty J. T cell-mediated immunity to malaria. Nat Rev Immunol. 2019;19:457ā€“71.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Borst J, Ahrends T, Bąbała N, Melief CJM, KastenmĆ¼ller W. CD4 T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18:635ā€“47.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Fan NW, Dohlman TH, Foulsham W, McSoley M, Singh RB, Chen Y, et al. The role of Th17 immunity in chronic ocular surface disorders. Ocul Surf. 2021;19:157ā€“68.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Schlƶder J, Shahneh F, Schneider F, Wieschendorf B. Boosting regulatory T cell function for the treatment of autoimmune diseasesā€”Thatā€™s only half the battle! Front Immunol. 2022;13:973813.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Jin W, Zheng Y, Zhu P. T cell abnormalities in systemic sclerosis. Autoimmun Rev. 2022;21:103185.

  6. Lee GR. The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci. 2018;19:730.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Zhang W, Liu X, Zhu Y, Liu X, Gu Y, Dai X, et al. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. Eur J Immunol. 2021;51:2137ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Littman D, Rudensky A. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010;140:845ā€“58.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309:1074ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008;10:837ā€“48.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer Cell. 2016;29:783ā€“803.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol. 2017;18:800ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Zinngrebe J, Montinaro A, Peltzer N, Walczak H. Ubiquitin in the immune system. EMBO Rep. 2014;15:28ā€“45.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Sun SC. Deubiquitylation and regulation of the immune response. Nat Rev Immunol. 2008;8:501ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Yang XD, Sun SC. Deubiquitinases as pivotal regulators of T cell functions. Front Med. 2018;12:451ā€“62.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Beck DB, Werner A, Kastner DL, Aksentijevich I. Disorders of ubiquitylation: unchained inflammation. Nat Rev Rheumatol. 2022;18:435ā€“47.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Liang F, Miller AS, Tang C, Maranon D, Williamson EA, Hromas R, et al. The DNA-binding activity of USP1-associated factor 1 is required for efficient RAD51-mediated homologous DNA pairing and homology-directed DNA repair. J Biol Chem. 2020;295:8186ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Lim KS, Li H, Roberts EA, Gaudiano EF, Clairmont C, Sambel LA, et al. USP1 Is Required for Replication Fork Protection in BRCA1-Deficient Tumors. Mol Cell. 2018;72:925ā€“41.e4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Yu Z, Song H, Jia M, Zhang J, Wang W, Li Q, et al. USP1-UAF1 deubiquitinase complex stabilizes TBK1 and enhances antiviral responses. J Exp Med. 2017;214:3553ā€“63.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Song H, Zhao C, Yu Z, Li Q, Yan R, Qin Y, et al. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun. 2020;11:6042.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Cohn MA, Kee Y, Haas W, Gygi SP, Dā€™Andrea AD. UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J Biol Chem. 2009;284:5343ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Omilusik KD, Nadjsombati MS, Yoshida TM, Shaw LA, Goulding J, Goldrath AW. Ubiquitin Specific Protease 1 Expression and Function in T Cell Immunity. J Immunol. 2021;207:1377ā€“87.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE, et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity. 2013;39:259ā€“71.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Li Y, Lu Y, Wang S, Han Z, Zhu F, Ni Y, et al. USP21 prevents the generation of T-helper-1-like Treg cells. Nat Commun. 2016;7:13559.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Zhang J, Chen C, Hou X, Gao Y, Lin F, Yang J, et al. Identification of the E3 deubiquitinase ubiquitin-specific peptidase 21 (USP21) as a positive regulator of the transcription factor GATA3. J Biol Chem. 2013;288:9373ā€“82.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, et al. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 2020;21:e50308.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Wang L, Kumar S, Dahiya S, Wang F, Wu J, Newick K, et al. Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity. EBioMedicine. 2016;13:99ā€“112.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Yang J, Xu P, Han L, Guo Z, Wang X, Chen Z, et al. Cutting edge: Ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORĪ³t. J Immunol. 2015;194:4094ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. He Z, Wang F, Ma J, Sen S, Zhang J, Gwack Y, et al. Ubiquitination of RORĪ³t at Lysine 446 Limits Th17 Differentiation by Controlling Coactivator Recruitment. J Immunol. 2016;197:1148ā€“58.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Han L, Yang J, Wang X, Wu Q, Yin S, Li Z, et al. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor Ī³t (RORĪ³t) in Th17 cells. J Biol Chem. 2014;289:25546ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Rennie ML, Lemonidis K, Arkinson C, Chaugule VK, Clarke M, Streetley J, et al. Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA. EMBO Rep. 2020;21:e50133.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. van Twest S, Murphy VJ, Hodson C, Tan W, Swuec P, O'Rourke JJ, et al. Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway. Mol Cell. 2017;65:247ā€“59.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  33. Zhang Q, Liu W, Wang H, Zhou H, Bulek K, Chen X, et al. TH17 cells promote CNS inflammation by sensing danger signals via Mincle. Nat Commun. 2022;13:2406.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. D'addio F, Vergani A, Potena L, Maestroni A, Usuelli V, Ben Nasr M, et al. P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. J Clin Investig. 2018;128:3490ā€“503.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Arbore G, West EE, Spolski R, Robertson A, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science. 2016;352:aad1210.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Bruchard M, RebĆ© C, DerangĆØre V, TogbĆ© D, Ryffel B, Boidot R, et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16:859ā€“70.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Du W, Erden O, Wilson A, Sipple JM, Schick J, Mehta P, et al. Deletion of Fanca or Fancd2 dysregulates Treg in mice. Blood. 2014;123:1938ā€“47.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Shanzer M, Adler J, Ricardo-Lax I, Reuven N, Shaul Y. The nonreceptor tyrosine kinase c-Src attenuates SCF(Ī²-TrCP) E3-ligase activity abrogating Taz proteasomal degradation. Proc Natl Acad Sci USA. 2017;114:1678ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Huang W, Lv X, Liu C, Zha Z, Zhang H, Jiang Y, et al. The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFĪ²-TrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. J Biol Chem. 2012;287:26245ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Zhang Z, Du J, Wang S, Shao L, Jin K, Li F, et al. OTUB2 Promotes Cancer Metastasis via Hippo-Independent Activation of YAP and TAZ. Mol Cell. 2019;73:7ā€“21.e27.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Li J, Dai Y, Ge H, Guo S, Zhang W, Wang Y, et al. The deubiquitinase USP7 promotes HNSCC progression via deubiquitinating and stabilizing TAZ. Cell Death Dis. 2022;13:677.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Zhao C, Gong J, Bai Y, Yin T, Zhou M, Pan S, et al. A self-amplifying USP14-TAZ loop drives the progression and liver metastasis of pancreatic ductal adenocarcinoma. Cell Death Differ. 2022. https://doi.org/10.1038/s41418-022-01040-w. Online ahead of print.

  43. Mussell A, Shen H, Chen Y, Mastri M, Eng KH, Bshara W, et al. USP1 Regulates TAZ Protein Stability Through Ubiquitin Modifications in Breast Cancer. Cancers. 2020;12:3090.

  44. Yuan P, Feng Z, Huang H, Wang G, Chen Z, Xu G, et al. USP1 inhibition suppresses the progression of osteosarcoma via destabilizing TAZ. Int J Biol Sci. 2022;18:3122ā€“36.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Fu Y, Wang P, Zhao J, Tan Y, Sheng J, He S, et al. USP12 promotes CD4(+) T cell responses through deubiquitinating and stabilizing BCL10. Cell Death Differ. 2021;28:2857ā€“70.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Fu Y, Zhan X, Wang Y, Jiang X, Liu M, Yang Y, et al. NLRC3 expression in dendritic cells attenuates CD4(+) T cell response and autoimmunity. EMBO J. 2019;38:e101397.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Huang Y, He S, Chen Y, Sheng J, Fu Y, Du X, et al. UCHL1 Promoted Polarization of M1 Macrophages by Regulating the PI3K/AKT Signaling Pathway. J Inflamm Res. 2022;15:735ā€“46.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of T(H)17 cells and T(reg) cells. Nat Immunol. 2017;18:800ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank all members of the Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, for helpful discussions and input.

Funding

This work was funded by grants from the National Natural Science Foundation of China (81971805, 81901614, 81901659, 32070906, 82072384, 82074160, and 82272239).

Author information

Authors and Affiliations

Authors

Contributions

SFH, GLJ, LSL and PW designed the research; XTZ, PW, XXZ, YPZ, JLS, STH, YTC, DNN, XLY, and HYM conducted the research; XTZ, QHY, LGJ and SFH analyzed data; XTZ, XXZ and SFH wrote the paper; GLJ, LSL, PW and SFH provided essential reagents or materials; and SFH, GLJ and LSL as the corresponding authors conducted the experiments. All authors read and approved the final paper.

Corresponding authors

Correspondence to Laisheng Li, Ligang Jie or Shengfeng Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All procedures followed were in accordance with protocols approved by the Medical Ethics Board and the Biosafety Management Committee of Southern Medical University.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wang, P., Zhan, X. et al. USP1-regulated reciprocal differentiation of Th17 cells and Treg cells by deubiquitinating and stabilizing TAZ. Cell Mol Immunol 20, 252ā€“263 (2023). https://doi.org/10.1038/s41423-022-00969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00969-9

Keywords

This article is cited by

Search

Quick links