Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The epidermal immune microenvironment plays a dominant role in psoriasis development, as revealed by mass cytometry

Abstract

Psoriasis is a common chronic inflammatory skin disease. The diversity and heterogeneity of immune cells in human skin have been studied in recent years, but the spatial distribution of immune cells at the single-cell level in the human psoriatic epidermis and dermis remains unclear. In this study, we mapped psoriatic skin immune cells from paired lesional, perilesional, and nonlesional skin samples using mass cytometry. Phenotypic dendritic cells (DCs) were found in the psoriatic epidermis and dermis. Psoriatic dermal CD1c+CD11b+ cDC2s migrated to the epidermis in the perilesional skin during the preinitiation stage. CD1c+CD11b+ cDC2s rapidly replaced EpCAM+CD11clow LC cells and initiated inflammation. Simultaneously, CD207+CD11chi LC and CD5+ T cells accumulated in the psoriatic epidermis and orchestrated epidermal inflammation in psoriasis. The immune cell pool in the psoriatic dermis primarily included APCs and T cells. However, unlike that in the dermis, the epidermal immune environment was more significant and coincided with the inflammation occurring during psoriasis.

The epidermal immune microenvironment plays a dominant role in psoriasis. Langerhans cells, epidermis-resident memory T cells and macrophages together contribute to healthy epidermal immune homeostasis. However, psoriatic CD1c+CD11b+ epidermal cDC2s are positioned in the perilesional area, replacing EpCAM+CD11clow LCs rapidly and initiating inflammation. Epidermal CD141+ cDC1s, CD1c+ cDC2s, CD14+ moDCs, and BDCA2+ pDCs orchestrate psoriatic inflammation. Meanwhile, CD11chi LCs and CD5+ T cells accumulate in the psoriatic epidermis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 2018;553:427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kobayashi T, Naik S, Nagao K. Choreographing immunity in the skin epithelial barrier. Immunity. 2019;50:552–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kabashima K, Honda T, Ginhoux F, Egawa G. The immunological anatomy of the skin. Nat Rev Immunol. 2019;19:19–30.

    Article  CAS  PubMed  Google Scholar 

  4. Dainichi T, Hanakawa S, Kabashima K. Classification of inflammatory skin diseases: a proposal based on the disorders of the three-layered defense systems, barrier, innate immunity and acquired immunity. J Dermatol Sci. 2014;76:81–9.

    Article  PubMed  Google Scholar 

  5. Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 2017;31:205–12.

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA. 2020;323:1945–60.

    Article  CAS  PubMed  Google Scholar 

  7. Polese B, Zhang H, Thurairajah B, King IL. Innate lymphocytes in psoriasis. Front Immunol. 2020;11:242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker J. Psoriasis. Lancet. 2021;397:1301–15.

    Article  CAS  PubMed  Google Scholar 

  9. Wang A, Bai Y. Dendritic cells: the driver of psoriasis. J Dermatol. 2020;47:104–13.

    Article  CAS  PubMed  Google Scholar 

  10. Nakamizo S, Dutertre CA, Khalilnezhad A, Zhang XM, Lim S, Lum J, et al. Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J Exp Med. 2021;218:e20202345.

  11. Solimani F, Meier K, Ghoreschi K. Emerging topical and systemic JAK inhibitors in dermatology. Front Immunol. 2019;10:2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martini E, Wikén M, Cheuk S, Gallais Sérézal I, Baharom F, Ståhle M, et al. Dynamic changes in resident and infiltrating epidermal dendritic cells in active and resolved psoriasis. J Investig Dermatol. 2017;137:865–73.

    Article  CAS  PubMed  Google Scholar 

  13. Das D, Akhtar S, Kurra S, Gupta S, Sharma A. Emerging role of immune cell network in autoimmune skin disorders: An update on pemphigus, vitiligo and psoriasis. Cytokine Growth Factor Rev. 2019;45:35–44.

    Article  CAS  PubMed  Google Scholar 

  14. Delic D, Wolk K, Schmid R, Gabrielyan O, Christou D, Rieber K, et al. Integrated microRNA/mRNA expression profiling of the skin of psoriasis patients. J Dermatol Sci. 2020;97:9–20.

    Article  CAS  PubMed  Google Scholar 

  15. Nosbaum A, Dahel K, Goujon C, Nicolas JF, Mengeaud V, Vocanson M. Psoriasis is a disease of the entire skin: non-lesional skin displays a prepsoriasis phenotype. Eur J Dermatol. 2021;31:143–54.

    Article  CAS  PubMed  Google Scholar 

  16. Kashem SW, Haniffa M, Kaplan DH. Antigen-presenting cells in the skin. Annu Rev Immunol. 2017;35:469–99.

    Article  CAS  PubMed  Google Scholar 

  17. Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D, Chakarov S, et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity. 2016;45:669–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol. 2019;19:89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B, et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med. 2010;207:189–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mayer JU, Hilligan KL, Chandler JS, Eccles DA, Old SI, Domingues RG, et al. Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote TH2 and inhibit TH17 cell polarization. Nat Immunol. 2021;22:1538–50.

    Article  CAS  PubMed  Google Scholar 

  21. Yan B, Liu N, Li J, Li J, Zhu W, Kuang Y, et al. The role of Langerhans cells in epidermal homeostasis and pathogenesis of psoriasis. J Cell Mol Med. 2020;24:11646–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eaton LH, Mellody KT, Pilkington SM, Dearman RJ, Kimber I, Griffiths C. Impaired Langerhans cell migration in psoriasis is due to an altered keratinocyte phenotype induced by interleukin-17. Br J Dermatol. 2018;178:1364–72.

    Article  CAS  PubMed  Google Scholar 

  23. Eidsmo L, Martini E. Human langerhans cells with pro-inflammatory features relocate within psoriasis lesions. Front Immunol. 2018;9:300.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fujita H, Shemer A, Suárez-Fariñas M, Johnson-Huang LM, Tintle S, Cardinale I, et al. Lesional dendritic cells in patients with chronic atopic dermatitis and psoriasis exhibit parallel ability to activate T-cell subsets. J Allergy Clin Immunol. 2011;128:574–82. e1-12

    Article  CAS  PubMed  Google Scholar 

  25. Komine M, Karakawa M, Takekoshi T, Sakurai N, Minatani Y, Mitsui H, et al. Early inflammatory changes in the “perilesional skin” of psoriatic plaques: is there interaction between dendritic cells and keratinocytes? J Investig Dermatol. 2007;127:1915–22.

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Zhu R, Luo Y, Wang S, Zhao Y, Qiu Z, et al. Distinct human Langerhans cell subsets orchestrate reciprocal functions and require different developmental regulation. Immunity. 2021;54:2305–20. e11

    Article  CAS  PubMed  Google Scholar 

  27. Sabat R, Wolk K, Loyal L, Döcke WD, Ghoreschi K. T cell pathology in skin inflammation. Semin Immunopathol. 2019;41:359–77.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol. 2017;140:645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu J, Chang HW, Huang ZM, Nakamura M, Sekhon S, Ahn R, et al. Single-cell RNA sequencing of psoriatic skin identifies pathogenic Tc17 cell subsets and reveals distinctions between CD8(+) T cells in autoimmunity and cancer. J Allergy Clin Immunol. 2021;147:2370–80.

    Article  CAS  PubMed  Google Scholar 

  30. Girolomoni G, Strohal R, Puig L, Bachelez H, Barker J, Boehncke WH, et al. The role of IL-23 and the IL-23/TH 17 immune axis in the pathogenesis and treatment of psoriasis. J Eur Acad Dermatol Venereol. 2017;31:1616–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khalil S, Bardawil T, Kurban M, Abbas O. Tissue-resident memory T cells in the skin. Inflamm Res. 2020;69:245–54.

    Article  CAS  PubMed  Google Scholar 

  32. Chen L, Shen Z. Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol. 2020;17:64–75.

    Article  CAS  PubMed  Google Scholar 

  33. Yang K, Kallies A. Tissue-specific differentiation of CD8(+) resident memory T cells. Trends Immunol. 2021;42:876–90.

    Article  CAS  PubMed  Google Scholar 

  34. Leijten EF, van Kempen TS, Olde Nordkamp MA, Pouw JN, Kleinrensink NJ, Vincken NL, et al. Tissue-resident memory CD8+ T cells from skin differentiate psoriatic arthritis from psoriasis. Arthritis Rheumatol. 2021;73:1220–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Samat AAK, van der Geest J, Vastert SJ, van Loosdregt J, van Wijk F. Tissue-resident memory T cells in chronic inflammation-local cells with systemic effects? Cells. 2021;10:409.

  36. Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol. 2021;184:14–24.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Yang XQ, Cheng J, Hui RS, Gao TW. Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin Immunol. 2010;135:108–17.

    Article  CAS  PubMed  Google Scholar 

  38. Yun WJ, Lee DW, Chang SE, Yoon GS, Huh JR, Won CH, et al. Role of CD4CD25FOXP3 regulatory T cells in psoriasis. Ann Dermatol. 2010;22:397–403.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sanchez Rodriguez R, Pauli ML, Neuhaus IM, Yu SS, Arron ST, Harris HW, et al. Memory regulatory T cells reside in human skin. J Clin Investig. 2014;124:1027–36.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Keijsers RR, van der Velden HM, van Erp PE, de Boer-van Huizen RT, Joosten I, Koenen HJ, et al. Balance of Treg vs. T-helper cells in the transition from symptomless to lesional psoriatic skin. Br J Dermatol. 2013;168:1294–302.

    Article  CAS  PubMed  Google Scholar 

  41. Efremova M, Vento-Tormo R, Park JE, Teichmann SA, James KR. Immunology in the era of single-cell technologies. Annu Rev Immunol. 2020;38:727–57.

    Article  CAS  PubMed  Google Scholar 

  42. Reynolds G, Vegh P, Fletcher J, Poyner E, Stephenson E, Goh I, et al. Developmental cell programs are co-opted in inflammatory skin disease. Science. 2021;371:eaba6500.

  43. Yager N, Cole S, Lledo Lara A, Maroof A, Penkava F, Knight JC, et al. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann Rheum Dis. 2021;80:1559–67.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol. 2019;20:928–42.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guo R, Zhang T, Meng X, Lin Z, Lin J, Gong Y, et al. Lymphocyte mass cytometry identifies a CD3-CD4+ cell subset with a potential role in psoriasis. JCI Insight. 2019;4:e125306.

  46. Solberg SM, Aarebrot AK, Sarkar I, Petrovic A, Sandvik LF, Bergum B, et al. Mass cytometry analysis of blood immune cells from psoriasis patients on biological therapy. Eur J Immunol. 2021;51:694–702.

    Article  CAS  PubMed  Google Scholar 

  47. Xue D, Tabib T, Morse C, Lafyatis R. Transcriptome landscape of myeloid cells in human skin reveals diversity, rare populations and putative DC progenitors. J Dermatol Sci. 2020;97:41–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ginhoux F, Guilliams M, Merad M. Expanding dendritic cell nomenclature in the single-cell era. Nat Rev Immunol. 2022.

  49. He H, Suryawanshi H, Morozov P, Gay-Mimbrera J, Del Duca E, Kim HJ, et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J Allergy Clin Immunol. 2020;145:1615–28.

    Article  CAS  PubMed  Google Scholar 

  50. Lou F, Sun Y, Xu Z, Niu L, Wang Z, Deng S, et al. Excessive polyamine generation in keratinocytes promotes self-RNA sensing by dendritic cells in psoriasis. Immunity. 2020;53:204–16.e10

    Article  CAS  PubMed  Google Scholar 

  51. Singh TP, Zhang HH, Borek I, Wolf P, Hedrick MN, Singh SP, et al. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat Commun. 2016;7:13581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alcántara-Hernández M, Leylek R, Wagar LE, Engleman EG, Keler T, Marinkovich MP, et al. High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity. 2017;47:1037–50. e6

    Article  PubMed  PubMed Central  Google Scholar 

  53. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol. 2014;14:417–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 81930089, 82103709, and 82230104). The authors wish to thank PLTTECH (ZJ, China) for providing technical support and kind assistance with the mass cytometry analysis. The authors wish to thank Prof. Qing-Sheng Mi for providing kind advice on this project.

Funding

This study was supported by grants from the National Natural Science Foundation of China (Nos. 81930089, 82103709, and 82230104).

Author information

Authors and Affiliations

Authors

Contributions

MZ and XYM designed the research studies; XYM and MZ supervised the methods and administered and funded the project; YZ, FX and XYC conducted the experiments; YZ and FX acquired the data and analyzed the data; BXY, ZYW and SQC provided reagents; YZ wrote the manuscript; and FX and XYM edited the paper. YZ, FX and XYC conducted experiments including processing samples and performing CyTOF staining and flow cytometry, and YZ refined concepts and wrote the manuscript; these three authors contributed equally to this work.

Corresponding author

Correspondence to Xiao-Yong Man.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the Second Affiliated Hospital, Zhejiang University School of Medicine.

Additional information

Consent to participate Informed consent was obtained from all individual participants included in the study.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xu, F., Chen, XY. et al. The epidermal immune microenvironment plays a dominant role in psoriasis development, as revealed by mass cytometry. Cell Mol Immunol 19, 1400–1413 (2022). https://doi.org/10.1038/s41423-022-00940-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00940-8

Keywords

Search

Quick links