Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The membrane-associated ubiquitin ligases MARCH2 and MARCH3 target IL-5 receptor alpha to negatively regulate eosinophilic airway inflammation


Interleukin 5 (IL-5) plays crucial roles in type 2-high asthma by mediating eosinophil maturation, activation, chemotaxis and survival. Inhibition of IL-5 signaling is considered a strategy for asthma treatment. Here, we identified MARCH2 and MARCH3 as critical negative regulators of IL-5-triggered signaling. MARCH2 and MARCH3 associate with the IL-5 receptor α chain (IL-5Rα) and mediate its K27-linked polyubiquitination at K379 and K383, respectively, and its subsequent lysosomal degradation. Deficiency of MARCH2 or MARCH3 modestly increases the level of IL-5Rα and enhances IL-5-induced signaling, whereas double knockout of MARCH2/3 has a more dramatic effect. March2/3 double knockout markedly increases the proportions of eosinophils in the bone marrow and peripheral blood in mice. Double knockout of March2/3 aggravates ovalbumin (OVA)-induced eosinophilia and causes increased inflammatory cell infiltration, peribronchial mucus secretion and production of Th2 cytokines. Neutralization of Il-5 attenuates OVA-induced airway inflammation and the enhanced effects of March2/3 double deficiency. These findings suggest that MARCH2 and MARCH3 play redundant roles in targeting IL-5Rα for degradation and negatively regulating allergic airway inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

All data needed to evaluate the conclusions in the paper are presented in the paper. The materials described in the study are either commercially available or available upon request from the corresponding author.


  1. Yanagibashi T, Satoh M, Nagai Y, Koike M, Takatsu K. Allergic diseases: From bench to clinic - contribution of the discovery of interleukin-5. Cytokine. 2017;98:59–70.

    Article  CAS  Google Scholar 

  2. Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity. 2019;50:796–811.

    Article  CAS  Google Scholar 

  3. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332:243–7.

    Article  CAS  Google Scholar 

  4. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184:1469–85.

    Article  CAS  Google Scholar 

  5. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388:2128–41.

    Article  CAS  Google Scholar 

  6. Rothenberg ME. Humanized anti-IL-5 antibody therapy. Cell. 2016;165:509.

    Article  CAS  Google Scholar 

  7. Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P, et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3:355–66.

    Article  CAS  Google Scholar 

  8. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380:651–9.

    Article  CAS  Google Scholar 

  9. Tomaki M, Zhao LL, Lundahl J, Sjostrand M, Jordana M, Linden A, et al. Eosinophilopoiesis in a murine model of allergic airway eosinophilia: involvement of bone marrow IL-5 and IL-5 receptor alpha. J Immunol. 2000;165:4040–50.

    Article  CAS  Google Scholar 

  10. Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, et al. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev. 2012;250:277–302.

    Article  Google Scholar 

  11. Ogata N, Kouro T, Yamada A, Koike M, Hanai N, Ishikawa T, et al. JAK2 and JAK1 constitutively associate with an interleukin-5 (IL-5) receptor alpha and betac subunit, respectively, and are activated upon IL-5 stimulation. Blood. 1998;91:2264–71.

    Article  CAS  Google Scholar 

  12. Takaki S, Kanazawa H, Shiiba M, Takatsu K. A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor alpha chain and its function in IL-5-mediated growth signal transduction. Mol Cell Biol. 1994;14:7404–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stout BA, Bates ME, Liu LY, Farrington NN, Bertics PJ. IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J Immunol. 2004;173:6409–17.

    Article  CAS  Google Scholar 

  14. Yun Y, Kanda A, Kobayashi Y, Van Bui D, Suzuki K, Sawada S, et al. Increased CD69 expression on activated eosinophils in eosinophilic chronic rhinosinusitis correlates with clinical findings. Allergol Int. 2020;69:232–8.

    Article  CAS  Google Scholar 

  15. Sonkin D, Palmer M, Rong X, Horrigan K, Regnier CH, Fanton C, et al. The identification and characterization of a STAT5 gene signature in hematologic malignancies. Cancer Biomark. 2015;15:79–87.

    Article  CAS  Google Scholar 

  16. Kagami S, Nakajima H, Kumano K, Suzuki K, Suto A, Imada K, et al. Both stat5a and stat5b are required for antigen-induced eosinophil and T-cell recruitment into the tissue. Blood. 2000;95:1370–7.

    Article  CAS  Google Scholar 

  17. Zhu Y, Chen L, Huang Z, Alkan S, Bunting KD, Wen R, et al. Cutting edge: IL-5 primes Th2 cytokine-producing capacity in eosinophils through a STAT5-dependent mechanism. J Immunol. 2004;173:2918–22.

    Article  CAS  Google Scholar 

  18. Samji T, Hong S, Means RE. The Membrane Associated RING-CH Proteins: A Family of E3 Ligases with Diverse Roles through the Cell. Int Sch Res Not. 2014;2014:637295.

    PubMed  PubMed Central  Google Scholar 

  19. Lin H, Li S, Shu HB. The Membrane-Associated MARCH E3 Ligase Family: Emerging Roles in Immune Regulation. Front Immunol. 2019;10:1751.

    Article  CAS  Google Scholar 

  20. Zheng C. The emerging roles of the MARCH ligases in antiviral innate immunity. Int J Biol Macromol. 2021;171:423–7.

    Article  CAS  Google Scholar 

  21. Chen R, Li M, Zhang Y, Zhou Q, Shu HB. The E3 ubiquitin ligase MARCH8 negatively regulates IL-1beta-induced NF-kappaB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation. Proc Natl Acad Sci USA 2012;109:14128–33.

    Article  CAS  Google Scholar 

  22. Lin H, Gao D, Hu MM, Zhang M, Wu XX, Feng L, et al. MARCH3 attenuates IL-1beta-triggered inflammation by mediating K48-linked polyubiquitination and degradation of IL-1RI. Proc Natl Acad Sci USA 2018;115:12483–8.

    Article  CAS  Google Scholar 

  23. Lin H, Feng L, Cui KS, Zeng LW, Gao D, Zhang LX, et al. The membrane-associated E3 ubiquitin ligase MARCH3 downregulates the IL-6 receptor and suppresses colitis-associated carcinogenesis. Cell Mol Immunol. 2021;18:2648–59.

    Article  CAS  Google Scholar 

  24. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    Article  CAS  Google Scholar 

  25. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.

    Article  CAS  Google Scholar 

  26. Nakamura N. The role of the transmembrane RING finger proteins in cellular and organelle function. Membr (Basel). 2011;1:354–93.

    CAS  Google Scholar 

  27. Chathuranga K, Kim TH, Lee H, Park JS, Kim JH, Chathuranga WAG, et al. Negative regulation of NEMO signaling by the ubiquitin E3 ligase MARCH2. EMBO J. 2020;39:e105139.

    Article  CAS  Google Scholar 

  28. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404:193–7.

    Article  CAS  Google Scholar 

  29. Iwasaki H, Mizuno S, Mayfield R, Shigematsu H, Arinobu Y, Seed B, et al. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med. 2005;201:1891–7.

    Article  CAS  Google Scholar 

  30. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147–74.

    Article  CAS  Google Scholar 

  31. Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat Med. 2013;19:977–9.

    Article  CAS  Google Scholar 

  32. Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma. Immunity. 2019;50:975–91.

    Article  CAS  Google Scholar 

  33. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, et al. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol. 1989;140:323–34.

    Article  CAS  Google Scholar 

  34. Fu Z, Yu C, Wang L, Gao K, Xu G, Wang W, et al. Development of a robust reporter gene based assay for the bioactivity determination of IL-5-targeted therapeutic antibodies. J Pharm Biomed Anal. 2018;148:280–7.

    Article  CAS  Google Scholar 

  35. Casaro M, Souza VR, Oliveira FA, Ferreira CM. OVA-induced allergic airway inflammation mouse model. Methods Mol Biol. 2019;1916:297–301.

    Article  CAS  Google Scholar 

  36. Zhang HX, Xu ZS, Lin H, Li M, Xia T, Cui K, et al. TRIM27 mediates STAT3 activation at retromer-positive structures to promote colitis and colitis-associated carcinogenesis. Nat Commun. 2018;9:3441.

    Article  Google Scholar 

  37. Tong J, Bandulwala HS, Clay BS, Anders RA, Shilling RA, Balachandran DD, et al. Fas-positive T cells regulate the resolution of airway inflammation in a murine model of asthma. J Exp Med. 2006;203:1173–84.

    Article  CAS  Google Scholar 

Download references


We thank Deng Gao, Xuemei Yi, Mi Li, Ru Zang, Chen Li, and Li Zhong for technical help and academic discussions and sincerely appreciate all the staff at the core facility of the Medical Research Institute at Wuhan University for their technical support. This work was supported by grants from the National Natural Science Foundation of China (32188101, 31830024 and 32070775), the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-071) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations



SL, H-BS, and L-WZ conceived and designed the study. L-WZ, LF, RL, and HL performed the experiments. SL, L-WZ, and H-BS analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Shu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, LW., Feng, L., Liu, R. et al. The membrane-associated ubiquitin ligases MARCH2 and MARCH3 target IL-5 receptor alpha to negatively regulate eosinophilic airway inflammation. Cell Mol Immunol 19, 1117–1129 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • MARCH2/3
  • IL-5Rα
  • Polyubiquitination
  • Eosinophil
  • Airway inflammation


Quick links