Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aging induces severe SIV infection accompanied by an increase in follicular CD8+ T cells with overactive STAT3 signaling

Subjects

Abstract

The number of elderly people living with HIV is increasing globally, and the condition of this population is relatively complicated due to the dual effects of aging and HIV infection. However, the impact of HIV infection combined with aging on the immune homeostasis of secondary lymphoid organs remains unclear. Here, we used the simian immunodeficiency virus mac239 (SIVmac239) strain to infect six young and six old Chinese rhesus macaques (ChRMs) and compared the infection characteristics of the two groups in the chronic stage through multiplex immunofluorescence staining of lymph nodes. The results showed that the SIV production and CD4/CD8 ratio inversion in old ChRMs were more severe than those in young ChRMs in both the peripheral blood and the lymph nodes, especially when a large number of CD8+ T cells infiltrated the follicles and germinal centers. STAT3 in these follicular CXCR5+CD8+ T cells was highly activated, with high expression of granzyme B, which might be caused by the severe inflammatory milieu in the follicles of old ChRMs. This study indicates that aging may be a cofactor involved in SIV-induced immune disorders in secondary lymphoid tissues, affecting the effective antiviral activity of highly enriched follicular CXCR5+CD8+ cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guaraldi G, Palella FJ Jr. Clinical implications of aging with HIV infection: perspectives and the future medical care agenda. AIDS. 2017;31:S129–S135. Suppl 2

    Article  PubMed  Google Scholar 

  2. He T, Falwell E, Brocca-Cofano E, Pandrea I. Modeling aging in HIV infection in nonhuman primates to address an emerging challenge of the post-ART era. Curr Opin Virol. 2017;25:66–75.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13:875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Larbi A, Franceschi C, Mazzatti D, Solana R, Wikby A, Pawelec G. Aging of the immune system as a prognostic factor for human longevity. Physiology. 2008;23:64–74.

    Article  CAS  PubMed  Google Scholar 

  5. Haberthur K, Engelman F, Barron A, Messaoudi I. Immune senescence in aged nonhuman primates. Exp Gerontol. 2010;45:655–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kirk JB, Goetz MB. Human immunodeficiency virus in an aging population, a complication of success. J Am Geriatr Soc. 2009;57:2129–38.

    Article  PubMed  Google Scholar 

  7. Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV infection. Immunity. 2013;39:633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evans DT, Silvestri G. Nonhuman primate models in AIDS research. Curr Opin HIV AIDS. 2013;8:255–61.

    PubMed  PubMed Central  Google Scholar 

  9. Lifson JD, Haigwood NL. Lessons in nonhuman primate models for AIDS vaccine research: from minefields to milestones. Cold Spring Harb Perspect Med. 2012;2:a007310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zheng HY, Zhang MX, Chen M, Jiang J, Song JH, Lian XD, et al. Accelerated disease progression and robust innate host response in aged SIVmac239-infected Chinese rhesus macaques is associated with enhanced immunosenescence. Sci Rep. 2017;7:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Herrmann A, Kortylewski M, Kujawski M, Zhang C, Reckamp K, Armstrong B, et al. Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res. 2010;70:7455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang WB, Levy DE, Lee CK. STAT3 negatively regulates type I IFN-mediated antiviral response. J Immunol. 2011;187:2578–85.

    Article  CAS  PubMed  Google Scholar 

  13. Che KF, Shankar EM, Muthu S, Zandi S, Sigvardsson M, Hinkula J, et al. p38 Mitogen-activated protein kinase/signal transducer and activator of transcription-3 pathway signaling regulates expression of inhibitory molecules in T cells activated by HIV-1-exposed dendritic cells. Mol Med. 2012;18:1169–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192:1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hagn M, Jahrsdorfer B. Why do human B cells secrete granzyme B? Insights into a novel B-cell differentiation pathway. Oncoimmunology. 2012;1:1368–75.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lu C, Klement JD, Ibrahim ML, Xiao W, Redd PS, Nayak-Kapoor A, et al. Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. J Immunother Cancer. 2019;7:157.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187–96.

    Article  CAS  PubMed  Google Scholar 

  18. Ray JP, Marshall HD, Laidlaw BJ, Staron MM, Kaech SM, Craft J. Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity. 2014;40:367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ritvo PG, Klatzmann D. Interleukin-1 in the response of follicular helper and follicular regulatory T cells. Front Immunol. 2019;10:250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harris LD, Tabb B, Sodora DL, Paiardini M, Klatt NR, Douek DC, et al. Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques. J Virol. 2010;84:7886–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee MYH, Upadhyay AA, Walum H, Chan CN, Dawoud RA, Grech C, et al. Tissue-specific transcriptional profiling of plasmacytoid dendritic cells reveals a hyperactivated state in chronic SIV infection. PLoS Pathog. 2021;17:e1009674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Das A, Heesters BA, Bialas A, O’Flynn J, Rifkin IR, Ochando J, et al. Follicular dendritic cell activation by TLR ligands promotes autoreactive B cell responses. Immunity. 2017;46:106–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heigele A, Joas S, Regensburger K, Kirchhoff F. Increased susceptibility of CD4+ T cells from elderly individuals to HIV-1 infection and apoptosis is associated with reduced CD4 and enhanced CXCR4 and FAS surface expression levels. Retrovirology. 2015;12:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dock JN, Effros RB. Role of CD8 T cell replicative senescence in human aging and in HIV-mediated immunosenescence. Aging Dis. 2011;2:382–97.

    PubMed  PubMed Central  Google Scholar 

  25. Connick E, Folkvord JM, Lind KT, Rakasz EG, Miles B, Wilson NA, et al. Compartmentalization of simian immunodeficiency virus replication within secondary lymphoid tissues of rhesus macaques is linked to disease stage and inversely related to localization of virus-specific CTL. J Immunol. 2014;193:5613–25.

    Article  CAS  PubMed  Google Scholar 

  26. Folkvord JM, Armon C, Connick E. Lymphoid follicles are sites of heightened human immunodeficiency virus type 1 (HIV-1) replication and reduced antiretroviral effector mechanisms. AIDS Res Hum Retroviruses. 2005;21:363–70.

    Article  CAS  PubMed  Google Scholar 

  27. Brown FD, Turley SJ. Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. J Immunol. 2015;194:1389–94.

    Article  CAS  PubMed  Google Scholar 

  28. Beck SE, Veenhuis RT, Blankson JN. Does B cell follicle exclusion of CD8+ T cells make lymph nodes sanctuaries of HIV replication? Front Immunol. 2019;10:2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mackrides N, Campuzano-Zuluaga G, Maque-Acosta Y, Moul A, Hijazi N, Ikpatt FO, et al. Epstein-Barr virus-positive follicular lymphoma. Mod Pathol. 2017;30:519–29.

    Article  CAS  PubMed  Google Scholar 

  30. Connick E, Mattila T, Folkvord JM, Schlichtemeier R, Meditz AL, Ray MG, et al. CTL fail to accumulate at sites of HIV-1 replication in lymphoid tissue. J Immunol. 2007;178:6975–83.

    Article  CAS  PubMed  Google Scholar 

  31. Deleage C, Wietgrefe SW, Del Prete G, Morcock DR, Hao XP, Piatak, Jr. M, et al. Defining HIV and SIV reservoirs in lymphoid tissues. Pathog Immun. 2016;1:68–106.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Migueles SA, Osborne CM, Royce C, Compton AA, Joshi RP, Weeks KA, et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity. 2008;29:1009–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Betts MR. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107:4781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Friedrich TC, Valentine LE, Yant LJ, Rakasz EG, Piaskowski SM, Furlott JR, et al. Subdominant CD8+ T-cell responses are involved in durable control of AIDS virus replication. J Virol. 2007;81:3465–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chowdhury A, Hayes TL, Bosinger SE, Lawson BO, Vanderford T, Schmitz JE, et al. Differential impact of In Vivo CD8+ T lymphocyte depletion in controller versus progressor simian immunodeficiency virus-infected macaques. J Virol. 2015;89:8677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412–28.

    Article  CAS  PubMed  Google Scholar 

  37. Li S, Folkvord JM, Rakasz EG, Abdelaal HM, Wagstaff RK, Kovacs KJ, et al. Simian immunodeficiency virus-producing cells in follicles are partially suppressed by CD8+ cells in vivo. J Virol. 2016;90:11168–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Webster RL, Johnson RP. Delineation of multiple subpopulations of natural killer cells in rhesus macaques. Immunology. 2005;115:206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mylvaganam GH, Rios D, Abdelaal HM, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci USA. 2017;114:1976–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrovas C, et al. Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies. Sci Transl Med. 2017;9:eaag2285.

  41. Xie MM, et al. Follicular regulatory T cells inhibit the development of granzyme B-expressing follicular helper T cells. JCI Insight. 2019;4:e128076.

  42. Kahan SM, Bakshi RK, Ingram JT, Hendrickson RC, Lefkowitz EJ, Crossman DK, et al. Intrinsic IL-2 production by effector CD8 T cells affects IL-2 signaling and promotes fate decisions, stemness, and protection. Sci Immunol. 2022;7:eabl6322.

    Article  CAS  PubMed  Google Scholar 

  43. Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol. 2013;13:777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karlsson I, Malleret B, Brochard P, Delache B, Calvo J, Le Grand R, et al. FoxP3+ CD25+ CD8+ T-cell induction during primary simian immunodeficiency virus infection in cynomolgus macaques correlates with low CD4+ T-cell activation and high viral load. J Virol. 2007;81:13444–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006;108:1571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bu LL, Yu GT, Wu L, Mao L, Deng WW, Liu JF, et al. STAT3 Induces Immunosuppression by Upregulating PD-1/PD-L1 in HNSCC. J Dent Res. 2017;96:1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi YS, Eto D, Yang JA, Lao C, Crotty S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J Immunol. 2013;190:3049–53.

    Article  CAS  PubMed  Google Scholar 

  48. Eto D, Lao C, DiToro D, Barnett B, Escobar TC, Kageyama R, et al. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLoS One. 2011;6:e17739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stauffer W, Sheng H, Lim HN. EzColocalization: an ImageJ plugin for visualizing and measuring colocalization in cells and organisms. Sci Rep. 2018;8:15764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (2021YFC2301703), National Natural Science Foundation of China (81771770; 81671627; U1802284; 81971548; 82071847) and National Resource Center for Non-Human Primates.

Author information

Authors and Affiliations

Authors

Contributions

HYZ and YTZ conceived the project; HYZ, XHW, and XYH designed and performed the core experiments; HYZ, XHW, MC, MXZ, XDL, MC YH, and JHS performed the animal experiments; HYZ analyzed the data; WP, YW, ZFH, and LBL provided critical resources; HYZ drafted the manuscript; YTZ edited the manuscript. All authors contributed intellectually and approved the manuscript.

Corresponding author

Correspondence to Yong-Tang Zheng.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests, patents, patent applications, or material transfer agreements associated with this study.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, HY., Wang, XH., He, XY. et al. Aging induces severe SIV infection accompanied by an increase in follicular CD8+ T cells with overactive STAT3 signaling. Cell Mol Immunol 19, 1042–1053 (2022). https://doi.org/10.1038/s41423-022-00899-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00899-6

Keywords

This article is cited by

Search

Quick links