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SARS-CoV-2 ORF10 suppresses the antiviral innate immune
response by degrading MAVS through mitophagy
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The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) has caused severe morbidity and mortality in humans. It is urgent to understand the function of viral genes. However, the
function of open reading frame 10 (ORF10), which is uniquely expressed by SARS-CoV-2, remains unclear. In this study, we showed
that overexpression of ORF10 markedly suppressed the expression of type | interferon (IFN-I) genes and IFN-stimulated genes. Then,
mitochondrial antiviral signaling protein (MAVS) was identified as the target via which ORF10 suppresses the IFN-I signaling
pathway, and MAVS was found to be degraded through the ORF10-induced autophagy pathway. Furthermore, overexpression of
ORF10 promoted the accumulation of LC3 in mitochondria and induced mitophagy. Mechanistically, ORF10 was translocated to
mitochondria by interacting with the mitophagy receptor Nip3-like protein X (NIX) and induced mitophagy through its interaction
with both NIX and LC3B. Moreover, knockdown of NIX expression blocked mitophagy activation, MAVS degradation, and IFN-I
signaling pathway inhibition by ORF10. Consistent with our observations, in the context of SARS-CoV-2 infection, ORF10 inhibited
MAVS expression and facilitated viral replication. In brief, our results reveal a novel mechanism by which SARS-CoV-2 inhibits the

innate immune response; that is, ORF10 induces mitophagy-mediated MAVS degradation by binding to NIX.
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INTRODUCTION
Coronaviruses (CoVs) infect a variety of host species, including
humans, pigs, cattle, horses, rats, and bats. These viruses
predominantly cause respiratory and intestinal tract infections
and result in a wide range of clinical manifestations [1, 2]. CoVs
were formerly considered relatively harmless respiratory patho-
gens in humans. However, zoonotic CoVs have crossed species
barriers, leading to novel CoVs that can spread from animals to
humans. For example, SARS-CoV resulted in outbreaks of SARS in
2002 and 2003 [3], Middle East respiratory syndrome CoV (MERS-
CoV) emerged in 2012 and continues to circulate in camels [4],
and the novel CoV SARS-CoV-2, the causative agent of coronavirus
disease 2019 (COVID-19), emerged in December 2019 and is
responsible for the current severe outbreak of COVID-19 world-
wide, which has led to substantial morbidity and mortality.
Therefore, the need to better understand the molecular mechan-
ism underlying viral infection and spread in the body is urgent.
The SARS-CoV-2 genome is a positive-sense, nonsegmented,
single-stranded RNA with a length of 29.9kb. The genome of
SARS-CoV-2 contains 14 open reading frames (ORFs) flanked by 5
and 3’ untranslated regions [5]. ORF1a and ORF1b, which account
for approximately two-thirds of the viral RNA genome, encode
polyproteins that are further cleaved to form 16 nonstructural

proteins (nsps) that form the viral replicase-transcriptase complex
[6, 7]. The ORFs in the third of the genome near the 3’ terminus
encode four main structural proteins, the spike (S), envelope (E),
membrane (M), and nucleocapsid (N) proteins, which are
components of the virion [8]. In addition, the SARS-CoV-2 genome
encodes eleven accessory proteins: ORF3a, ORF3b, ORF3c, ORF3d,
ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10 [9].
Although the genome of SARS-CoV-2 (NCBI reference sequence:
NC_045512.2) [10] is similar to that of SARS-CoV (NCBI reference
sequence: NC_004718.3) [11], SARS-CoV-2 exhibits lower patho-
genicity and higher infectivity than SARS-CoV [12]. Compared with
the SARS-CoV genome, the SARS-CoV-2 genome uniquely encodes
the ORF10 protein, which contains 38 amino acids [13, 14]. ORF10
was reported to bind to an E3 ubiquitin ligase complex containing
Cullin-2, Rbx1, Elongin B, Elongin C, and ZYG11B, which
ubiquitinates host proteins and degrades them via the 26S
proteasome; ZYG11B is dispensable for SARS-CoV-2 infection, and
the interaction between ORF10 and ZYG11B is not relevant for
SARS-CoV-2 infection [15]. However, how ORF10 functions in the
interaction between the virus and host cells is unclear.
SARS-CoV-2 disrupts the host innate immune response via both
its structural proteins and Nsps and induces overt but delayed
type | interferon (IFN-I) responses [16]. Upon SARS-CoV-2 infection,
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IFN-I production is decreased, and the release of proinflammatory
cytokines is enhanced, disrupting the balance of the immune
response, which is responsible for the great severity of SARS-CoV-2
infection [17]. IFN-I production is rapidly triggered by the
recognition of pathogen-associated molecular patterns, such as
viral nucleic acids, by host sensors [18]. CoV RNA can be
recognized by RIG-I-like receptors (RLRs), including retinoic acid-
inducible gene | (RIG-) and/or melanoma differentiation gene 5
(MDAS5), in the cytoplasm [19]. After activation, RIG-l and MDA5
can interact with the adapter mitochondrial antiviral signaling
protein (MAVS, also termed IPS-1, VISA, and Cardif) [16, 20].
Subsequently, MAVS recruits two IKK-related kinases, TANK-
binding kinase 1 (TBK1) and inducible IkB kinase (IKKi), leading
to activation of the transcription factors interferon regulatory
factor 3/7 (IRF3/7) and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB) [21]. Then, these proteins trigger
signaling cascades to initiate the production of IFNs as well as the
downstream expression of multiple IFN-stimulated genes (ISGs)
and inflammatory cytokines [22]. The IFN-I response is critical for
the response to SARS-CoV-2 infection. The use of IFN combined
with ribavirin for the treatment of SARS-CoV infection has shown
some beneficial effects [23-25]. Furthermore, IFN treatment was
found to inhibit SARS-CoV-2 infection in a dose-dependent
manner in human Calu-3 cells and simian Vero E6 cells, but the
potential of IFN as a therapeutic agent for COVID-19 awaits
validation [17]. Recent studies have shown that MDA5, LGP2, and
NOD1 are required for the recognition of SARS-CoV-2 by lung
epithelial cells and that IRF3, IRF5 and NF-kB/p65 are key
transcription factors that regulate the IFN response during
SARS-CoV-2 infection [26]. SARS-CoV-2 has developed multiple
strategies to antagonize the innate immune response by attacking
these key molecules in the IFN-I signaling pathway. For example,
SARS-CoV-2 M targets MAVS and impairs its accumulation
and recruitment of downstream signaling components [21].
SARS-CoV-2 ORF6 antagonizes the host innate immune response
by blocking IRF3 activation and STAT1 nuclear translocation [16].
SARS-CoV-2 Nsp14 targets the type | IFN receptor IFNAR1 for
lysosomal degradation, thus blocking activation of the crucial
transcription factors STAT1 and STAT2 [27]. However, whether
SARS-CoV-2 ORF10 plays a role in antagonizing antiviral immunity
is unknown.

In the immune system, proper mitochondrial function is a
prerequisite for inflammatory responses and host defense [28].
Viral infection can affect the host mitochondrial network,
including mitophagy induction [29]. Some viruses trigger mito-
phagy through different strategies and control the process of
mitophagy [29]. This ability enables viruses to promote persistent
infection and attenuate innate immune responses [29]. The study
indicates that the matrix protein of HPIV3 induces Parkin-PINK1-
independent complete mitophagy, inhibiting host antiviral IFN
responses [30]. In addition, HHV-8-encoded viral interferon
regulatory factor 1 (vIRF-1) promotes mitochondrial clearance by
binding to a mitophagy receptor, NIX, on mitochondria and
activating NIX-mediated mitophagy to support viral replication
[31]. NIX is a typical autophagy receptor that is able to transport
mitochondria to autophagosomes through direct interaction with
Atg8 family proteins [32]. NIX-mediated mitophagy is responsible
for the elimination of spontaneously aggregated MAVS [33].
Therefore, successful viral infection and replication are largely
achieved by the ability of viruses to attenuate the innate antiviral
responses mediated by mitochondria [31]. However, there are no
relevant studies on the induction of mitophagy by SARS-CoV-2 to
escape the host’s innate immune surveillance.

In this study, we demonstrate that SARS-CoV-2 ORF10 inhibits
innate immunity and promotes viral replication by inducing
mitophagy to degrade MAVS. ORF10 interacts with Nip3-like
protein X (NIX) and LC3B and translocates to mitochondria, where
it induces mitophagy, leading to MAVS degradation. Further study
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showed that NIX is involved in the ORF10-mediated degradation
of MAVS and blockade of IFN responses.

MATERIALS AND METHODS

Cells and viruses

HEK293T (ATCC CRL-11268) and Hela (ATCC CCL-2) cells were grown in
Dulbecco’s modified Eagle’s medium (DMEM; VivaCell) supplemented with
10% fetal bovine serum (FBS; HyClone) and the antibiotics penicillin and
streptomycin (both 100 U/ml; New Cell & Molecular Biotech Co., Ltd.). The
cells were maintained at 37 °C in a 5% CO, environment. The human/CHN/
Beijing-01/2020 SARS-CoV-2 strain was used in this experiment. Infection
experiments were performed in a ABSL-3 laboratory. For SARS-CoV-2
infection, HelLa cells with stable expression of ACE2 were infected with
SARS-CoV-2 at an MOI of 0.1. After 1 h, the cells were washed with PBS
(Spark Jade) and cultured for an additional 24 h.

HeLa-ACE2 stable cell lines

pLVX-ACE2-Flag-IRES-Puro was transfected into Hela cells. After 48h,
puromycin was added to the cells at a concentration of 3 ug/mL, and the
cells were selected for 4 days until drug-resistant cell clones were obtained.
Drug-resistant cell clones were harvested, and the cultures were expanded.
Western blot analysis was performed with an anti-ACE2 antibody to detect
the expression of ACE2.

Reagents

The proteasome inhibitors MG132, bafilomycin A1 (Baf A1) and Mdivi-1
were purchased from MedChemExpress; chloroquine diphosphate salt
(CQ) was purchased from Sigma-Aldrich and used at a final concentration
of 40 uM; and poly(l:C) (LMW) was purchased from InvivoGen.

Plasmid constructs

All enzymes used for cloning procedures were purchased from Vazyme
(Nanjing, China). The HA-MDAS5, Flag-RIG-IN, Flag-MAVS, IRF3 (5D)-HA,
TBK1-HA, and IFN-B-Luc plasmids and the pRL-TK internal control luciferase
reporter plasmid used in the study were described previously [34, 35].
SARS-CoV-2 ORF10 was cloned into pEGFP-N1 (Clontech Laboratories,
Mountain View, CA), GFP-LC3 was cloned into pcDNA3.1 (Clontech
Laboratories, Mountain View, CA), ORF10 was cloned into pCMV-HA
(Clontech Laboratories, Mountain View, CA), Flag-NIX was cloned into
pLVX-IRES-Puro  (Clontech Laboratories, Mountain View, CA), and
pcDNA3.1-mCherry-GFP-LC3  (mCherry-GFP-LC3) was purchased from
Miaoling. pDsRed2-Mito (Mito-DsRed) was purchased from Clontech. All
constructs were subjected to restriction digestion profiling and sequencing
analysis for confirmation.

qRT-PCR

Total RNA was extracted, and mRNA was quantified as described
previously [36]. All expression levels determined by real-time PCR were
normalized to B-actin expression levels to avoid systematic and random

Table 1. Oligonucleotide primers and sequences

Target Genes Primer Sequences (5’ to 3’)

Human-IFN-a1-F GCCATCTCTGTCCTCCAT
Human-IFN-a1-R AGTTTCTCCCACCCTCTC
Human-IFN-B-F GGACAGGATGAACTTTGACA
Human-IFN-B-R AGACATTAGCCAGGAGGTT
Human-ISG15-F TCTGAGCATCCTGGTGAG
Human-ISG15-R GAAGGTCAGCCAGAACAG

Human-OAS1-F
Human-OAS1-R

GCTCCTACCCTGTGTGTGTGT
TGGTGAGAGGACTGAGGAAGA

Human-B-actin-F GGAAATCGTGCGTGACAT
Human-f-actin-R AAGGAAGGCTGGAAGAGT
shORF10-F GTTTTCGCTTTTCCGTTTAC
shORF10-R TTAACTACATCTACTTGTGCTATG
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errors during sample processing; the primer sequences used are listed in
Table 1.

Western blotting and antibodies

Cells were lysed with RIPA lysis buffer (containing ProtLytic Protease and
Phosphatase Inhibitor Cocktail (NCM Biotech)) on ice for 30 min. Proteins in
the cell lysates were separated by SDS-PAGE and electrotransferred to
PVDF membranes, which were blocked for 1 h with 5% nonfat milk and
were then incubated with the indicated antibodies and detected with an
Omni-ECL™ Femto Light Chemiluminescence Kit (Epizyme). The following
primary antibodies were used: rabbit monoclonal anti-GFP (catalog no.
AB0045), rabbit monoclonal anti-ISG15 (catalog no. CY7086), rabbit
monoclonal anti-LC3B (catalog no. CY5992) and rabbit monoclonal anti-
TOMM20 (catalog no. CY5527), which were obtained from Abways
Technology Inc; mouse monoclonal anti-MAVS (catalog no. sc166583),
which was obtained from Santa Cruz Biotechnology; rabbit monoclonal
anti-OAS1 (catalog no. 14498), rabbit monoclonal anti-MDA-5 (catalog no.
5321), rabbit monoclonal anti-RIG-I (catalog no. 3743), rabbit monoclonal
anti-TBK1 (catalog no. 3504), rabbit monoclonal anti-phospho-TBK1 S172
(catalog no. 5483), rabbit monoclonal anti-IRF3 (catalog no. 4302), rabbit
monoclonal anti-phospho-IRF3 S396 (catalog no. 4947), rabbit monoclonal
anti-SQSTM1/p62 (catalog no. 8025), rabbit monoclonal anti-BNIP3L/NIX
(catalog no. 12396), rabbit monoclonal anti-PINK1 (catalog no. 6946), rabbit
monoclonal anti-NDP52 (catalog no. 60732), rabbit monoclonal anti-
optineurin (catalog no. 58981), rabbit monoclonal anti-HA tag (catalog no.
3724) and rabbit monoclonal anti-DYKDDDDK tag (catalog no. 14793),
which were obtained from Cell Signaling Technology; mouse monoclonal
anti-SARS-CoV/SARS-CoV-2 (COVID-19) nucleocapsid antibody (catalog no.
GTX632269), which was obtained from GeneTex Inc; and mouse
monoclonal anti-B-actin (catalog no. sc-47778), which was obtained from
Santa Cruz Inc. The following secondary antibodies were used: horseradish
peroxidase (HRP)-conjugated sheep anti-rabbit IgG and HRP-conjugated
ECL sheep anti-mouse IgG (Jackson ImmunoResearch Inc., Baltimore, PA,
USA). Protein bands were detected with enhanced chemiluminescence
(ECL) reagent. Information on the antibodies used in this study is listed in
Table 2.

Gene silencing

Cells were grown to 40% confluence and were then incubated with 50 nM
NIX siRNA (5-AACACGTACCATCCTCATCCT-3') [37] or pYr-Lvsh-shORF10 (5/-
GCACAAGTAGATGTAGTTAAC-3) and Attractene Transfection Reagent
(QIAGEN) for 36 h according to the manufacturer’s instructions.

Generation of NiX-knockout (KO) Hela cells

NIX-KO cells were created by CRISPR-Cas9 gene editing and purchased
from CRISPRdirect (http://crispr.dbcls.jp). The single-guide RNA (sgRNA)
sequence targeting the human NIX gene (5'-CTTTGAAGAAAAGTGCGGAC-
3’) was cloned into the pSpCas9 (BB)-2A-Puro (PX459) vector (Addgene,
Feng Zhang). To generate NIX-KO Hela cells, the NIX-KO plasmid was
transfected into Hela cells using Attractene Transfection Reagent
(QIAGEN). At 36 hpt, transfected cells were selected in medium containing
3.0 pg/ml puromycin, and the medium was changed daily for selection of
positive clones. Six days post transfection, the positive clones were
subjected to limiting dilution in 96-well plates for selection of monoclonal
cells. NIX-KO cell lines were obtained and confirmed by immunoblotting.

Enzyme-linked immunosorbent assay (ELISA)

A human IFN-B Quantikine ELISA Kit (Bio-Techne, Minneapolis, MN, USA,
DIFNBO) was utilized to measure the concentrations of IFN- in culture
supernatants according to the manufacturer’s instructions. Assay Diluent
RD1-19 was added to each well, and standard substances, including
deionized water, control, or sample, were added to each well. Cells were
incubated for 2h at room temperature. Each well was aspirated and
washed, and the process was repeated three times for a total of four
washes. Human IFN-B Conjugate was added to each well. A fresh adhesive
strip was used to cover the plates, and the plates were incubated for 2 h at
room temperature on a shaker. The wash step was repeated. Substrate
solution was added to each well and incubated for 30min at
room temperature on the bench top. Stop solution was added to each
well. The color in the wells changed from blue to yellow. The optical
density of each well was determined within 30 min using a microplate
reader set to 450 nm. In addition, the absorbance at a wavelength of
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570 nm was measured, and this value was used to correct for optical
imperfections in the plate.

Dual-luciferase assay

HEK293T cells were seeded in 96-well plates in DMEM supplemented with
10% FBS and were then cotransfected in triplicate with the IFN-B-Luc
reporter plasmid and pRL-TK internal control plasmid with or without the
indicated expression plasmids using standard calcium phosphate pre-
cipitation with Attractene transfection reagent (Qiagen, Valencia, CA, USA).
After 24 h of transfection, a dual-luciferase assay was performed using a
dual-luciferase assay kit (Promega Corporation, Madison, WI, USA) and a
SpectraMax M5 microplate reader (Molecular Devices Instruments
Inc., USA).

Immunofluorescence assay (IFA)

Hela cells plated on coverslips in 24-well plates were transfected with the
indicated plasmids for 24 h, after which the original culture was discarded.
The cells were then washed with PBS, fixed with room-temperature 4%
paraformaldehyde (PFA)/PBS for 10 min, washed, permeabilized with 0.1%
Triton X-100/TBS for 10 min, and blocked with 5% BSA. Next, the cells were
washed and sequentially incubated with primary antibodies at 4°C
overnight and with secondary antibodies at room temperature for
60 min. Nuclei were stained with DAPI (US Everbright Inc.). The secondary
antibodies used in this study were Alexa Fluor 350 goat anti-mouse IgG
(H+L) and Alexa Fluor 594 goat anti-rabbit IgG (H+L), which were
obtained from Invitrogen. Images were acquired using a Leica DMi8
microscope.

Coimmunoprecipitation (Co-IP)

Co-IP assays were performed using a Pierce™ Co-IP Kit (Thermo Scientific,
Waltham, MA, USA) according to the manufacturer's protocol. Whole-cell
extracts were collected 48 h after transfection and lysed in lysis buffer
supplemented with 1 mM PMSF and complete protease inhibitor cocktail
on ice for 30 min. After centrifugation for 10 min at 13,000 x g and 4 °C, the
supernatants were collected and incubated with Protein G Sepharose
beads coupled to specific antibodies for 2 h or overnight with rotation at 4
°C. The beads were then washed 3x with lysis buffer. The bound proteins
were eluted with elution buffer, and the lysates were boiled for 5 min with
sample buffer (50 mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, 0.1%
bromophenol blue and 1% (-mercaptoethanol). The lysates were
subjected to immunoblot analysis with the indicated antibodies.

Isolation of mitochondria

Pure mitochondria were isolated using a Minute™ Mitochondria Isolation
Kit (Invent Biotechnologies Inc.). HelLa cells were harvested by low-speed
centrifugation (500 - 600 x g for 5 min). The cells were washed once with 1
ml of cold PBS. The supernatant was completely removed, and the cell
pellet was resuspended in 250 pl of buffer A by vortexing briefly. The cell
suspension was incubated on ice for 5-10 min and vortexed vigorously for
20-30s. The cell suspension was then transferred to a filter cartridge. The
filter cartridge was capped and centrifuged at 16,000 x g for 30 s. The filter
was discarded, and the pellet was resuspended by vortexing briefly. The
pellet was resuspended by vortexing and centrifuged at 700 x g for 1 min,
after which the supernatant was transferred to a fresh 1.5-ml tube and 300
ul of buffer B was added at a supernatant:buffer B ratio of 1:1.2 (250 pl/300
pl). The solution was mixed by vortexing for 10s. The final supernatant:
buffer B ratio ranged from 1:1 to 1:1.6 (250 pl/400 pl). The sample was
centrifuged at 16,000xg for 10 min, after which it was completely
removed, and the pellet was resuspended in 200 pl of buffer B by repeated
pipetting and subsequent vigorous vortexing for 10-20s. The tube was
centrifuged at 8000 x g for 5 min. The supernatant was then transferred to
a fresh 2.0-ml tube to which 1.6 ml of cold PBS was added, and the sample
was centrifuged at 16,000xg for 15-30min. The supernatant was
discarded, and the pellet (isolated mitochondria) was saved.

Statistical analysis

The results are expressed as the mean + SD values. Comparisons between
the different groups were performed by t tests using GraphPad Prism 8.
Values of *P < 0.05, **P < 0.01, and ***P < 0.001 were considered significant,
and ns indicates a nonsignificant difference.
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Table 2. A list of reagents used in the study

Reagents
Antibodies
ISG15 (Rabbit mAb)
OAS1 (Rabbit mADb)
MDA-5 (Rabbit mAb)
RIG-I (Rabbit mAb)
MAVS (mouse mAb)
TBK1 (Rabbit mAb)
Phospho-TBK1 S172 (Rabbit mAb)
IRF3 (Rabbit mAb)
Phospho-IRF3 S396 (Rabbit mAb)
SQSTM1/p62 (Rabbit mAb)
BNIP3L/Nix (Rabbit mAb)
PINK1 (Rabbit mAb)
NDP52 (Rabbit mAb)
Optineurin (Rabbit mAb)
HA-Tag (Mouse mAb)
HA-Tag (Rabbit mAb)
DYKDDDDK (Rabbit mAb)
DYKDDDDK (Mouse mAb)
SARS-CoV-2 nucleocapsid (mouse mAb)
LC3B (Rabbit mAb)
TOMM20 (Rabbit mAb)
GFP (Rabbit mAb)
B-actin (mouse mADb)
AffiniPure Goat Anti-Mouse IgG (H + L)
AffiniPure Goat Anti-Rabbit IgG (H + L)

Goat anti-Mouse IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, Alexa

Fluor 350

Goat anti-Rabbit IgG (H + L) Cross-Adsorbed Secondary Antibody,Alexa
Fluor 594

Goat anti-Rabbit 1gG (H + L) Secondary Antibody, FITC
Bacterial and Virus Strains

SARS-CoV-2 strain SARS-CoV-2/human/CHN/Beijing-01/2020

Chemicals, Peptides, and Recombinant Proteins

Dimethyl sulfoxide (DMSO)

MG132

Bafilomycin A1

Mdivi-1

Poly(l:C) (LMW)

Chloroquine diphosphate salt

Attractene Transfection Reagent

PBS

DMEM

Puromycin

RIPA Buffer
Critical Commercial Assays

Dual-specific luciferase assay kit

Viral MiniBEST Universal RNA Extraction Kit

Pro Taq HS Premix Probe gPCR Kit

Human IFN-B Quantikine ELISA Kit

Pierce Co-Immunoprecipitation(Co-IP) Kit

ChamQ Universal SYBR gPCR Master Mix
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Source

Abways Technology

Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Santa Cruz Biotechnology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
GeneTex

Abways Technology
Abways Technology
Abways Technology
Santa Cruz Biotechnology
Jackson Immunoresearch
Jackson Immunoresearch
Invitrogen

Invitrogen

Invitrogen

This study

Sigma-Aldrich
MedChemExpress
MedChemExpress
MedChemExpress
InvivoGen

Sigma-Aldrich

QIAGEN

Sparkjade Science Co., Ltd
VivaCell,Shanghai,China
Solarbio

New Cell and Molecular Biotech

Promega

TaKaRa

Agbio

R&D Systems

Thermo Scientific
Vazyme Biotech Co.Ltd

Cellular & Molecular Immunology (2022) 19:67 - 78

Cati#

CY7086
14498
5321

3743
sc166583
3504

5483

4302

4947

8025
12396
6946
60732
58981
2367

3724
14793
8146
GTX632269
CY5992
CY5527
AB0045
sc47778
115-035-003
111-005-003
A21049

A11012

A16097

GenBank: MT291831

472301
HY-13259
HY-100558
HY-15886
tirl-picw
C6628
301007
CR0014
C3113-0500
P8230
WB3100

E1910
9767
AG11704
DIFNBO
26149
Q711
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Table 2. continued

Reagents
Experimental Models: Cell Lines
HEK293T cells
Hela cells
Oligonucleotides
shRNA Targeting sequences:ORF10: GCACAAGTAGATGTAGTTAAC
siRNA Targeting sequence:NIX:AACACGTACCATCCTCATCCT
Recombinant DNA
PEGFP-N1
PEGFP-N1-ORF10 (ORF10-GFP)
pcDNA3.1-mCherry-GFP-LC3 (mCherry-GFP-LC3)
pcDNA3.1-GFP-LC3 (GFP-LC3)
pDsRed2-Mito (Mito-DsRed)
pCMV-HA
pCMV-ORF10-3*HA (ORF10-HA)
pLVX-IRES-Puro
pLVX-HA-MDAS5-IRES-Puro (HA-MDAS5)
pLVX-Flag-RIG-IN-IRES-Puro (Flag-RIG-IN)
pLVX-Flag-MAVS-IRES-Puro (Flag-MAVS)
pLVX-TBK1-HA-IRES-Puro (TBK1-HA)
pLVX-IRF3(5D)-HA-IRES-Puro (IRF3(5D)-HA)
pLVX-Flag-NIX-IRES-Puro (Flag-NIX)
Software and Algorithms
Graphpad Prism 8
Image)

RESULTS

SARS-CoV-2 ORF10 inhibits the antiviral innate immune
response

SARS-CoV-2 uses several strategies to block the production of IFN-I
to circumvent host antiviral defenses, allowing the virus to
undergo rapid replication [16]. To explore the function of ORF10
in the antiviral innate immune response, Hela-ACE2 cells were
transfected with ORF10-HA and empty vector (pCMV-HA), and
whole-cell lysates were then examined using quantitative real-
time PCR (gRT-PCR) and western blotting. Overexpression of
ORF10 markedly suppressed the transcription of the IFN-a1 and
IFN-B genes upon stimulation with poly(l:C) or infection with
SARS-CoV-2 (Fig. 1a). We further showed that overexpression of
ORF10 downregulated the production of IFN-3 in HeLa cells upon
stimulation with poly(l:C) (Fig. 1b). Next, the effect of ORF10
expression on antiviral ISGs was detected, and it was found that
ORF10 expression decreased the mRNA levels of 1ISG15 and OAS1
compared with those in control cells upon poly(l:C) treatment or
SARS-CoV-2 infection (Fig. 1c). Consistent with these results,
immunoblot analysis showed that the ISG15 and OAST levels were
significantly reduced in cells overexpressing ORF10 (Fig. 1d).
Taken together, these data suggest that ORF10 suppresses
antiviral innate immune responses by abrogating IFN-I signaling.

SARS-CoV-2 ORF10 abrogates IFN-I signaling by autophagic
degradation of MAVS

To reveal the mechanisms by which ORF10 regulates IFN-I
signaling, we investigated the target of ORF10 in the RLR signaling
pathway. HEK293T cells were cotransfected with empty vector or
the ORF10 expression plasmid along with HA-MDAS5, Flag-RIG-I (N),
Flag-MAVS, TBK1-HA, the active form of IRF3(5D)-HA, and the IFN-
3 promoter and were then subjected to dual-luciferase reporter
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Source Cat#
ATCC CRL-11268
ATCC CCL-2
This paper N/A

This paper N/A

This paper N/A

This paper N/A

This paper N/A

This paper N/A
Takara Bio Inc 632421
This paper N/A

This paper N/A

This paper N/A

This paper N/A

This paper N/A

This paper N/A

This paper N/A
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assays to detect IFN-B promoter activity. Overexpression of ORF10
attenuated the induction of IFN-f promoter-mediated luciferase
reporter activity through MDA5, RIG-I (N), and MAVS but not
through TBK1 or IRF3 (Fig. 2a). Furthermore, overexpression of
ORF10 reduced the level of MAVS and significantly reduced the
levels of phosphorylated TBK1 and IRF3 but did not affect the
expression of RIG-I and MDAS5 (Fig. 2b), suggesting that
ORF10 specifically targets MAVS. Next, Hela cells were transfected
with the ORF10-GFP plasmid or pEGFP-N1 and were then
harvested and subjected to immunoblot analysis. As shown in
Fig. 2c, SARS-CoV-2 ORF10 downregulated the expression of MAVS
in a dose-dependent manner. These data indicate that ORF10
downregulates RLR-mediated activation of the IFN pathway by
inhibiting the expression of MAVS.

The main mechanisms of protein degradation in eukaryotic cells
include the ubiquitin (Ub)-proteasome system and the autopha-
gosomal pathway [38]. To explore whether ORF10 regulates MAVS
proteostasis via the Ub-proteasome system or the autophagoso-
mal pathway, we expressed ORF10 in HelLa cells and then treated
the cells with the protease inhibitor MG132, the autophagy
inhibitor bafilomycin A1 (Baf A1), or chloroquine (CQ). ORF10-
mediated degradation of the MAVS protein was blocked by the
autophagy inhibitors Baf A1 and CQ but not by the proteasome
inhibitor MG132 (Fig. 2d). To explore whether autophagy is
induced by ORF10, Hela cells were transfected with ORF10-HA or
pCMV-HA, and greater LC3-Il accumulation was observed in the
presence of ORF10 expression than in the absence of ORF10
expression; furthermore, ORF10 overexpression led to enhanced
degradation of P62 compared to that in mock control cells
(Fig. 2e), and ORF10-HA expression resulted in increased numbers
of mCherry"GFP~ puncta (Fig. 2f), suggesting that ORF10
expression induces complete autophagy.
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SARS-CoV-2 ORF10 induces mitophagy

Mitochondrial MAVS links mitochondria to antiviral type | IFN
signaling. Some viruses induce mitophagy, leading to mitochon-
drial fragmentation and thereby to detrimental effects on innate
immunity [39]. We found that GFP-tagged LC3 was colocalized
with DsRed-tagged Mito, a mitochondrial marker protein, in SARS-
CoV-2-infected cells (Fig. S1a), indicating that SARS-CoV-2 infec-
tion induced mitophagy. Moreover, BafA1 or Mdivi-1 treatment
inhibited SARS-CoV-2 infection-induced degradation of MAVS
(Fig. S1b), suggesting that SARS-CoV-2 infection results in
degradation of MAVS via mitophagy. To verify whether ORF10
inhibits MAVS protein expression by inducing mitophagy, we first
assessed the localization of ORF10 in mitochondria. Immunofluor-
escence analysis showed that GFP-tagged ORF10 was colocalized
with DsRed-tagged Mito in ORF10-GFP-transfected Hela cells
(Fig. 3a). Next, we determined whether ORF10 can induce
mitophagy. Immunofluorescence analysis showed that GFP-
tagged LC3B was colocalized with DsRed-tagged Mito in ORF10-
HA-transfected Hela cells (Fig. 3b), indicating that ORF10 induced
LC3 localization in mitochondria. Moreover, we detected the
expression of the outer membrane mitochondrial protein
TOMM20, a mitochondrial marker protein, and found that ORF10
expression resulted in a decrease in TOMM20 expression (Fig. 3c)
and that this ORF10 expression-induced decrease in TOMM20
expression was prevented by Baf A1 treatment (Fig. 3d).
Collectively, these data suggest that SARS-CoV-2 ORF10 degrades
the MAVS protein via mitophagy.

SARS-CoV-2 ORF10 induces mitophagy via its interaction with
NIX

Mitophagy is triggered by the activation of specific autophagy
receptors localized mainly on the outer mitochondrial membrane
(OMM) [31]. To determine the autophagy receptor to which ORF10
binds to initiate mitophagy, the expression of the autophagy

Cellular & Molecular Immunology (2022) 19:67 - 78

receptors NIX, OPTN, NDP52, PINK1, and P62 was detected in HelLa
cells expressing ORF10. The data revealed that ORF10 expression
increased the level of mitochondria-associated NIX but not the
levels of the other detected receptors (Fig. 4a). The ORF10-HA and
Flag-NIX plasmids were cotransfected into HEK293T cells, and
immunoprecipitation with the anti-HA or anti-Flag antibody and
immunoblot analysis with the anti-HA or anti-Flag antibody were
subsequently performed. The data showed that ORF10 coimmu-
noprecipitated with NIX (Fig. 4b, c). In addition, endogenous co-IP
experiments indicated that ORF10 had a physiological association
with NIX (Fig. 4d, e). Furthermore, LC3B was shown by reciprocal
co-IP to interact with ORF10 (Fig. 4f). To examine whether ORF10 is
colocalized with NIX, immunofluorescence analysis was per-
formed. The results revealed that a significant portion of NIX
was colocalized with ORF10 (Fig. 4g). Next, we examined the
function of NIX in ORF10-induced mitophagy. Confocal micro-
scopy confirmed that the localization of ORF10 in mitochondria
was dependent on the expression of NIX (Fig. 4h). Moreover, we
examined autophagy levels in both the cytosolic and
mitochondria-enriched fractions of Hela cells with stable NIX KO
and of Hela cells stably expressing the negative control vector
(PX459). As shown in Fig. 4i, there was no obvious difference in
the cytosolic LC3B-Il level upon ORF10 expression between PX459
and NIX-KO cells; however, the mitochondrial fraction of the lysate
of NIX-KO cells expressing ORF10 exhibited a significantly reduced
level of LC3B-Il compared with the mitochondrial fraction of the
lysate of mock control cells. These results suggest that NIX is a
specific modulator of ORF10-induced mitophagy.

NIX is necessary for ORF10-mediated degradation of MAVS
and inhibits the IFN-I response

We hypothesized that ORF10 degrades MAVS and suppresses
innate immunity in an NIX-dependent manner. As shown in
Fig. 5a, knockdown of NIX expression by transfection of siNIX
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suppressed the inhibitory effect of ORF10 on IFN-B production
triggered by MAVS. Overexpression of NIX increased the inhibitory
effect of ORF10 on IFN-3 production triggered by MAVS (Fig. 5b).
Consistent with these findings, knockout of NIX abolished the
inhibitory effect of ORF10 on IFN-B mRNA transcription triggered
by MAVS (Fig. 5c). Overexpression of NIX increased the inhibitory
effect of ORF10 on IFN-B mRNA transcription triggered by MAVS
(Fig. 5d). In addition, our experiments showed that NIX knockout
reversed the inhibitory effect of ORF10 on MAVS expression
(Fig. 5e). Treatment with the mitochondrial fission inhibitor Mdivi-
1 reversed the ORF10-induced inhibition of IFN-B mRNA expres-
sion (Fig. 5f). In brief, these results indicate that ORF10 inhibits the
innate immune response by regulating MAVS expression in an
NIX-dependent manner.

ORF10 facilitates SARS-CoV-2 replication via degradation of
MAVS

Finally, we examined the effects of ORF10 on viral propagation.
Hela-ACE2 cells transfected with the ORF10-HA or pCMV-HA
plasmid were infected with SARS-CoV-2 at an MOI of 0.1 and
harvested at the indicated time points. The cell lysates were
analyzed by western blotting and gqRT-PCR. The protein and
mMRNA levels of the viral N protein were increased in ORF10-HA-
transfected cells compared to pCMV-HA-transfected control cells
(Fig. 6a, b). Consistent with these observations, we silenced the
expression of ORF10 in SARS-CoV-2-infected cells and found that
the protein and mRNA levels of the viral N protein were
significantly reduced (Fig. 6c—e). Furthermore, ORF10 expression

SPRINGER NATURE

accelerated the SARS-CoV-2 infection-induced degradation of
MAVS (Fig. 6a). Consistent with these results, SARS-CoV-2 infection
in HeLa-ACE2 cells with inhibition of ORF10 expression no longer
downregulated MAVS expression (Fig. 6d). Finally, ORF10 expres-
sion was knocked down in HelLa-ACE2 cells, and the cells were
infected with SARS-CoV-2. The TCID5q assay showed that inhibition
of ORF10 expression reduced the replication of SARS-CoV-2
(Fig. 6f). Collectively, our results indicate that SARS-CoV-2 ORF10
promotes viral replication via degradation of MAVS.

DISCUSSION

The SARS-CoV-2 genome encodes eleven accessory proteins, and
the functions of several have been identified. ORF3a induces
apoptosis [40]; ORF3b is a potent IFN antagonist, and this effect
appears to be related to the ability of ORF3b to hinder the nuclear
translocation of IRF3 [5, 41]; ORF6 is able to block the transport of
the transcription factor STAT from the cytoplasm to the nucleus, in
turn blocking IFN activation [42]; ORF8 suppresses the IFN-I
signaling pathway by inhibiting binding to the IFN-stimulated
response element [43]; ORF9b suppresses IFN-I responses by
targeting TOM70 [44]; and ORF9c enables the virus to evade
immune surveillance by reducing the HLA abundance and antigen
presentation [45]. However, the function of ORF10, which is
uniquely expressed in SARS-CoV-2, is unknown. In the present
study, we found that SARS-CoV-2 ORF10 induces mitophagy to
degrade MAVS by binding to NIX, thus blocking MAVS-mediated
antiviral signaling and promoting viral replication.
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Viral antagonism of the host innate immune response is critical
for viral replication. In this study, we showed for the first time the
function of SARS-CoV-2 ORF10 in suppressing the innate immune
response. The expression of ORF10 inhibited the expression of
IFN-B and ISGs and the transcription of IFN-a1 and IFN-B mRNAs.
The RLR signaling pathway plays an important role in identifying
infection with RNA viruses and regulating the cellular innate
immune response. By screening adapter proteins in the RLR
signaling pathway, we identified MAVS as the target via which
ORF10 suppresses the IFN-I signaling pathway. At present, the
negative posttranslational regulation of MAVS is thought to be
achieved mainly by K48-linked ubiquitination [35], blockade of
signal transduction, and autophagy [46]. In ORF10-expressing
Hela cells, treatment with CQ or Baf A1 but not MG132 reversed
the ORF10-mediated inhibition of MAVS expression, indicating
that ORF10 degrades MAVS through the autophagy pathway.

Autophagy is a critical degradation process in all eukaryotes
that mediates the elimination of harmful components [47], while
the innate immune system is the first line of defense against
invading pathogens [48]. Innate immunity and autophagy are
inextricably linked and reciprocally regulated. MAVS is predomi-
nantly localized at the OMM and performs its functions there,
indicating that mitochondria provide a functional platform for
innate antiviral signal transduction [49]. Accumulating evidence
suggests that the autophagy pathway is also involved in
controlling MAVS-mediated antiviral signaling [50]. For example,
viral infection activates RLR signaling, and RNF34 binds to MAVS in
the mitochondrial compartment to promote the switch from K63-
linked to K27-linked polyubiquitination. The Ub chain attached to
MAVS is recognized by NDP52, resulting in the recruitment of
damaged mitochondria enriched in MAVS aggregates to vacuoles
for autophagic degradation [48]. In the present study, ORF10
expression induced complete autophagy. In addition, we found
that ORF10 was localized in mitochondria. Overexpression of
ORF10 promoted the localization of LC3 in mitochondria, and

Cellular & Molecular Immunology (2022) 19:67 - 78

ORF10 colocalized with LC3 in mitochondria. Moreover, ORF10
expression promoted the degradation of the mitochondrial outer
membrane protein TOMM20. Therefore, ORF10 induces mito-
phagy, ultimately leading to decreased mitochondrial MAVS
expression.

In general, mitophagy regulatory pathways are classified as Ub-
dependent or Ub-independent (receptor-dependent) [51]. PINK1
phosphorylates Ub chains on mitochondria and recruits autop-
hagy receptors, such as NDP52, OPTN, and P62, to induce
mitophagy [52, 53]. Here, we found that ORF10-induced
mitophagy was PINK1-independent, since overexpression of
ORF10 had no effect on the expression of PINK1, NDP52, OPTN,
or P62. In addition to Ub-dependent mitophagy, LC3-interacting
region (LIR)-containing mitophagy receptors can directly induce
Ub-independent mitophagy [54]. NIX belongs to the BH3-only
family and is involved in the initiation of autophagy. NIX is located
on the OMM and directly interacts with LC3 via its LIR motif to
mediate mitochondrial clearance. In this study, we confirmed that
NIX is a specific modulator of ORF10-induced mitophagy. ORF10
interacted directly with NIX and LC3B. Deletion of NIX attenuated
the induction of mitophagy by ORF10.

A previous study revealed that in the absence of N-terminally
truncated isoforms of MAVS, blockade of NIX-mediated mitophagy
stabilized full-length MAVS and induced the subsequent secretion
of type | IFNs and other proinflammatory cytokines [55]. Is NIX
involved in ORF10-mediated degradation of MAVS? Our data
showed that overexpression of NIX significantly enhanced the
inhibitory effects of ORF10 on MAVS expression and IFN-B
production, while NIX-KO weakened the inhibitory effect of
ORF10 on MAVS-mediated antiviral signaling, suggesting that NIX
plays a key role in ORF10-mediated blockade of antiviral signaling.
However, overexpression of ORF10 reduced MAVS-induced IFN-f
mMRNA expression even in NIX-KO cells, suggesting that ORF10
degrades MAVS not only through the NIX-mediated autophagy
pathway but also possibly through other degradation pathways.
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ORF10 transcripts can be detected in patients infected with
SARS-CoV-2 [56]. Moreover, Liu et al. found that the expression
level of ORF10 in patients with severe disease was much higher
than that in patients with moderate disease; in addition, the
expression ratio of ORF10 to nucleocapsid (N) in patients with
severe disease was significantly higher than that in patients with
moderate disease [57]. Therefore, ORF10 plays a vital role at all
stages of SARS-CoV-2 infection. In our study, overexpression of
ORF10 promoted the degradation of MAVS and the replication of
SARS-CoV-2. Consistent with these results, when ORF10 was
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knocked down by shRNA, MAVS was not degraded and viral
replication was weakened, suggesting that ORF10 facilitates SARS-
CoV-2 replication via degradation of MAVS. It is possible that
silencing ORF10 affects the functions of the total viral RNA
genome, leading to attenuated expression of other ORFs. In fact,
Sara Akerstrom et al. found that silencing the viral genes S, 3a, and
7a did not inhibit the expression of the full-length genomic RNA of
SARS-CoV [58].

In this study, we report the mechanism by which the SARS-CoV-
2 ORF10 protein abrogates antiviral innate immunity and
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Fig. 6 SARS-CoV-2 ORF10 enhances viral replication in Hela cells. a HeLa-ACE2 cells transfected with the ORF10-HA plasmid or pCMV-HA
were infected with SARS-CoV-2 at an MOI of 0.1 for 24 h, after which the cell lysates and culture supernatants were collected to analyze SARS-
CoV-2 N protein and MAVS protein expression. b HeLa-ACE2 cells transfected with the HA-tagged ORF10 plasmid or pCMV-HA were infected
with SARS-CoV-2 at an MOI of 0.1 for 24 h, and the cell lysates and culture supernatants were then collected to analyze viral RNA levels using
qRT-PCR. c-e After cotransfection with the ORF10-GFP plasmid and ORF10-specific ShRNA (shORF10) or control shRNA (shNC) for 24 h, cell
lysates were subjected to immunoblot analysis or gRT-PCR to determine the knockdown efficiency (c). After transfection with shNC or
shORF10, HelLa-ACE2 cells were infected with SARS-CoV-2, and the cell lysates were subjected to immunoblot analysis with the indicated
antibodies (d) or to gRT-PCR (e). f HeLa-ACE2 cells were transfected with shNC or shORF10 and were then infected with SARS-CoV-2 at an MOI
of 0.1 at 24 h post transfection. Cells were collected at 24 h and subjected to 3 freeze-thaw cycles. The titer of SARS-CoV-2 was determined by
a TCIDsg assay. Data from three independent experiments were analyzed by t tests (b, ¢, e, and f) and are presented as the mean + SD values
(*p <0.05, **p <0.01, and ***p < 0.001; ns indicates a nonsignificant difference)
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Fig.7 A model for the SARS-CoV-2 ORF10 blocks innate immunity via inducing mitophagy to degrade MAVS. SARS-CoV-2 ORF10 interacts
with NIX and LC3B and translocates to mitochondria, where it induces mitophagy, leading to MAVS degradation, thus resists the antiviral

natural immune response and facilitate viral infection.
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facilitates viral replication (Fig. 7). Our findings indicate that ORF10
interacts with NIX and LC3B to induce mitophagy, subsequently
leading to blockade of MAVS-mediated antiviral signaling. The
findings of this study provide a new direction for the study of the
molecular mechanism by which SARS-CoV-2 resists antiviral innate
immunity.
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