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TO THE EDITOR
It is believed that the inherent tolerogenic property of the liver is
involved in the chronicity of hepatitis B virus (HBV) infection [1].
However, exposure to HBV in adults usually leads to spontaneous
clearance of the virus and the induction of potent and effective
anti-HBV T cell immunity in the liver [2], suggesting that the
immune microenvironment of the liver switches from limiting to
allowing effector T cell responses during acute resolution of HBV
infection. To date, it remains largely unknown how the immune
microenvironment of the liver is regulated and by which
mechanism a favorable intrahepatic anti-HBV T cell response is
generated in an infected individual. Liver sinusoidal endothelial
cells (LSECs) play key roles in intrahepatic immune surveillance
against infection by regulating the activation of local immune cells
[3]. We have previously demonstrated that LSECs switch from a
tolerogenic to an immunogenic state and trigger cytotoxic
effector CD8 T cell activation under inflammatory conditions
[4, 5]. Here, we investigated whether LSECs exhibit plasticity and
switch from a tolerogenic to an immunogenic state upon HBV
exposure.
We first analyzed LSEC-mediated T cell suppression during the

course of acute resolution of HBV replication using the HBV
hydrodynamic injection (HDI) mouse model. LSECs were freshly
purified at 14 days post injection (dpi) and cocultured with T cell
receptor (TCR)-activated T cells (Fig. 1A). These T cells produced
significantly higher levels of IFNγ than those cocultured with
control LSECs (Fig. 1A). LSECs from HBV HDI mice also showed
less suppression of CD8 T cell proliferation than LSECs from
control mice (Fig. 1A). These results suggest that the ability of
LSECs to suppress T cell activation was abolished in HBV HDI mice
at 14 dpi. Next, we examined whether exposure to specific HBV
antigens altered the ability of LSECs to suppress T cell activation.
Our data showed that in vitro pretreatment of LSECs with
recombinant HBeAg (rHBeAg) completely abolished the suppres-
sion of T cell IFNγ production in a dose-dependent manner
(Fig. 1B). Activated T cells cocultured with LSECs exposed to
HBeAg in vivo also showed significantly increased IFNγ produc-
tion compared with those cocultured with control LSECs (Fig. 1B).

Moreover, CD3/CD28 Dynabead-activated human PBMCs cocul-
tured with rHBeAg-pretreated human LSECs produced signifi-
cantly higher amounts of IFNγ than PBMCs cultured with control
LSECs (Fig. 1B). These data suggest that HBeAg stimulation could
abrogate LSEC-mediated T cell suppression in both mice and
humans.
To further examine the possible mechanisms by which HBeAg-

exposed LSECs (HBeAg-LSECs) regulate T cell activation, HBeAg-
LSECs and unstimulated control LSECs (Ctrl-LSECs) were subjected
to transcriptome RNA sequencing analysis (Fig. S1A–C). The
pathway functional enrichment of coexpressed DEGs analysis and
gene set enrichment analysis (GSEA) revealed that gene sets
associated with the cytokine–cytokine receptor interaction and
TNF signaling pathway were enriched in HBeAg-LSECs (Fig. 1C),
among which the most upregulated gene was IL27 (~613-fold
increase), and the TNF signaling pathway exhibited the maximum
enriched ratio (Figs. 1C and S1D). Collectively, these data suggest
that HBeAg-LSECs induce T cell activation by producing cytokines.
This result was further confirmed by the observation that the
transfer of HBeAg-LSEC supernatants into cocultures of activated
T cells and untreated LSECs significantly increased IFNγ produc-
tion by activated T cells (Fig. S1E). Next, we examined the roles of
TNF and IL27 in HBeAg-LSEC-induced T cell immunity. Signifi-
cantly increased amounts of TNF and IL27 were measured in the
supernatant of HBeAg-LSECs after 24 h of in vitro stimulation or
LSECs purified from HBV HDI mice compared with those
produced by the corresponding Ctrl-LSECs (Figs. 1D and S2A,
B). TNF or IL27 blockade significantly abrogated IFNγ production
by activated T cells cocultured with HBeAg-LSECs or LSECs from
HBV HDI mice (Figs. 1E and S2C, D). In contrast, adding
recombinant TNF or IL27 to cocultures of activated T cells and
untreated LSECs significantly increased IFNγ production by
activated T cells (Figs. 1F and S2E).
Taken together, our study highlights a previously unappreciated

role of HBeAg in inducing LSECs to trigger specific T cell activation
partially by increasing IL27 and TNF expression and provides a
new regulatory mechanism of the intrahepatic immune micro-
environment during HBV infection.
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Fig. 1 HBeAg induces liver sinusoidal endothelial cell activation to promote intrahepatic CD8 T cell immunity and HBV clearance. A LSECs
from mice that were hydrodynamically injected with pSM2 plasmid (HBV) or PBS (HDI Ctrl) were isolated 14 days postinjection (dpi) and
cocultured with polyclonally stimulated splenocytes at a ratio of 1:2 (LSECs: splenocytes). Anti-CD3/anti-CD28–stimulated splenocytes were
used as a responder control (RC). Unstimulated splenocytes were used as a negative control (NC). IFNγ production was measured after 48 h.
CFSE-labeled polyclonally stimulated splenocytes were cocultured with LSECs, and after 72 h, CD8 T cell proliferation was analyzed by flow
cytometry. B Naïve mouse or primary human LSECs were treated with recombinant HBeAg (rHBeAg) or left untreated (Ctrl) for 24 h, washed
and cocultured with polyclonally stimulated splenocytes or PBMCs at a ratio of 1:2. LSECs from mice that were hydrodynamically injected with
pcDNA3.1/HBeAg or the pcDNA3.1/null plasmid at 2 dpi were isolated and cocultured with polyclonally stimulated splenocytes at a ratio of
1:2. IFNγ production was measured after 48 h. Anti-CD3/anti-CD28–stimulated splenocytes were used as a responder control (RC).
Unstimulated splenocytes were used as a negative control (NC). C LSECs from naïve mice were mock-treated or treated with rHBeAg, and total
RNA was extracted from the cells 6 h later for RNA-seq analysis. Log2-fold changes in the top 20 differentially expressed genes (DEGs), KEGG
pathway enrichment analysis and gene set enrichment analysis (GSEA), as determined by RNA-seq analysis. D Supernatants of rHBeAg-LSECs
or HBV-LSECs were analyzed for TNF α and IL-27. E Polyclonally stimulated splenocytes were cocultured with rHBeAg-LSECs or HBV-LSECs, and
then 10 μg/ml anti–IL-27 Abs (aIL-27) or anti–TNFα Abs (aTNFα) were added to the cocultures, with untreated cocultures as the control (Ctrl).
IFNγ production was measured by ELISA after 48 h. F Polyclonally stimulated splenocytes were cocultured with LSECs from naïve mice, and 50
ng/ml rIL-27 or 100 ng/ml rTNFα was added to the cocultures. IFNγ production was measured by ELISA after 48 h. Anti-CD3/anti-CD28-
stimulated splenocytes only were used as a responder controls (RC). Unstimulated splenocytes were used as a negative control (NC). Unpaired
t-test or one-way ANOVA is used. Error bars, mean ± SEM; *p < 0.05; **p < 0.01; ***p < 0.001.
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