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Microglia as hackers of the matrix: sculpting synapses and
the extracellular space
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Microglia shape the synaptic environment in health and disease, but synapses do not exist in a vacuum. Instead, pre- and
postsynaptic terminals are surrounded by extracellular matrix (ECM), which together with glia comprise the four elements of the
contemporary tetrapartite synapse model. While research in this area is still just beginning, accumulating evidence points toward a
novel role for microglia in regulating the ECM during normal brain homeostasis, and such processes may, in turn, become
dysfunctional in disease. As it relates to synapses, microglia are reported to modify the perisynaptic matrix, which is the diffuse
matrix that surrounds dendritic and axonal terminals, as well as perineuronal nets (PNNs), specialized reticular formations of
compact ECM that enwrap neuronal subsets and stabilize proximal synapses. The interconnected relationship between synapses
and the ECM in which they are embedded suggests that alterations in one structure necessarily affect the dynamics of the other,
and microglia may need to sculpt the matrix to modify the synapses within. Here, we provide an overview of the microglial
regulation of synapses, perisynaptic matrix, and PNNs, propose candidate mechanisms by which these structures may be modified,
and present the implications of such modifications in normal brain homeostasis and in disease.
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A SMALL CELL WITH MANY HATS: THE EMERGING
COMPLEXITY OF MICROGLIA
Far from acting simply as a structural glue that holds neuronal
networks together, as suggested by the Greek word from which
the name “glia” is derived, it is now readily apparent that microglia
and macroglia (astrocytes, oligodendrocytes) are important
determinants of brain development and health [1]. Microglia in
particular have been the focus of further reappraisal, as their
functional repertoire has extended from the classically immune—
detecting and resolving injury and invasive pathogens—to more
non-immune roles in the homeostatic brain [2–4]. These findings
have occurred across a backdrop of increasingly elegant
methodological advances, including single-cell analyses [5–7],
microglial ablation paradigms [8–12], and in vivo imaging
techniques [13–16], that together have characterized the dynamic
influence microglia have on virtually all major central nervous
system (CNS) cell types over the lifespan of an organism. However,
this increasing functional complexity suggests a greater opportu-
nity for dysfunction and dyshomeostasis should microglia fail to
properly perform their cellular roles at the appropriate times, as
supported by a growing body of evidence implicating microglia as
drivers of disease pathogenesis [17]. Therefore, taking stock of the
homeostatic functions performed by these cells—at this critical
juncture of glial biology research—may provide insight into what
goes wrong in disease and how such deficits may be best targeted
in the clinic.

Microglia and other resident tissue macrophages display
considerable diversity across organs at the gene expression and
chromatin levels [18], reflecting the varying developmental and
functional roles they play in each tissue [19–22]. The recent wave of
studies characterizing microglia at single-cell resolution indicate
extensive transcriptional heterogeneity during development and
disease, with a more homogeneous population evident in the
homeostatic adult brain [5–7, 23, 24]. If an empty niche is available
in the tissue myeloid compartment, cues from the local micro-
environment can reprogram infiltrating bone marrow-derived
monocytes or ontogenically foreign macrophages into microglia-
like phenotypes [25–30]. The extent of transcriptional reprogram-
ming appears to depend on the yolk-sac or hematopoietic origin of
the cell in question [8, 26], at least in the CNS, where the adult
resident macrophage population (e.g., microglia) derives from yolk-
sac erythromyeloid progenitors [31–34]. The capacity for macro-
phage re-education, combined with the diverse transcriptional
profiles of resident macrophages in different organs and stages of
life, emphasizes the complexity of homeostatic functions per-
formed by tissue myeloid cells, even in adults.
Research into the role of microglia in neurodevelopment has

revealed numerous essential functions not directly related to
immunity but essential for proper brain organization and tissue
health [1, 21, 22]. Additional investigation into early microglial
functions has drawn some to label these cells “architects” of the
developing CNS [1, 35], with top-down roles in the spatial
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organization and survival of both neuronal and non-neuronal cell
types. In the perinatal period, microglia orchestrate spatial
patterning of neurons through a variety of regulatory mechanisms
that dictate neuronal/neuronal precursor cell (NPC) survival, i.e.,
signaling through soluble/membrane-bound microglial factors
(glutamate, reactive oxygen species, and TNF-α) that induce
programmed cell death prior to microglial phagocytosis of debris,
reported phagocytosis of live cells (“phagoptosis”), and secretion of
pro-survival factors (e.g., insulin-like growth factor; IGF-1) [21].
Microglia continue to regulate neurogenesis in the adult brain by
phagocytic maintenance of the hippocampal NPC pool [36]. A
major re-evaluation of microglial effector functions in the brain was
spurred by the discovery of synaptic engulfment and pruning by
postnatal microglia that occurs in an activity- and complement-
dependent manner to refine the neural circuitry [37–39] and
continues to some extent in adults during memory processing [40].
Extensive work in recent years has elucidated the regulation of

other glial cells by microglia, and vice versa, particularly in regard
to astrocytes [41–44]. Microglia induce a neurotoxic phenotype in
astrocytes (termed “A1” astrocytes) following LPS via release of
microglial IL-1ɑ, TNF-ɑ, and C1q that promotes neuronal and
oligodendrocyte death; loss of these factors (i.e., in Il1ɑ−/−Tnf−/

−C1qɑ−/− triple knockout mice) or microglia themselves (Csf1r−/−

mice) blocks A1 astrocyte formation [45]. Detrimental gain-of-
function properties in neurotoxic astrocytes are accompanied by a
loss of beneficial properties, including their support of neuronal
outgrowth and synaptogenesis [45]. Subsequent studies deter-
mined that blocking these regulatory microglial factors by genetic
or pharmacologic means ameliorates such neurotoxic astrocyte
reactivity and/or neuronal death in models of amyotrophic lateral
sclerosis (ALS) [46], Parkinson’s disease [47], optic nerve crush [48],
glaucoma [48, 49], and aging [50]. It should be noted that the
constitutive Il1ɑ−/−Tnf−/−C1qɑ−/− triple knockout mice utilized in
many of the aforementioned studies on astrocyte reactivity in
disease will have off-target effects in a number of pathways, given
the importance of these three molecules in a broad array of
signaling cascades and biological functions [39, 51–53]. Therefore,
the in vivo findings generated from these mice should be
validated with targeted in vitro approaches, as in [45, 46], or
with the in vivo use of specific pharmacological agents (e.g.,
neutralizing antibodies to IL-1ɑ, TNF-ɑ, and C1q [48], or the
glucagon-like peptide-1 receptor agonist NLY01 [47, 49]) and/or
conditionally inducible knockout models.
In addition to affecting oligodendrocyte number via the

cytotoxic effects of reactive astrocytes [45], microglia also
choreograph oligodendrocyte patterning directly in disease and
under homeostatic conditions [2, 54]. Postnatal microglia are
required for early oligodendrocyte precursor cell (OPC) main-
tenance and maturation and continue to support the OPC pool in
adulthood [55], and minocycline-based inhibition of postnatal
microglial activation impairs oligodendrocyte differentiation [56].
Furthermore, early microglia promote developmental myelino-
genesis [55] at least in part through the production of
myelinogenic IGF-1 by a CD11c+ microglial subpopulation [57],
and myelin in the adult brain is phagocytosed by microglia, where
it accumulates with age [58, 59]. Interactions with oligodendro-
cytes in disease are multifaceted, such that microglia can support
remyelination in certain cases, as in the secretion of activin A to
promote OPC proliferation and differentiation [60], and persis-
tently disrupt OPC/oligodendrocyte population dynamics and
myelination in others [61].
Thus, despite traditional classifications of microglia as immune

cells first, mounting data indicate that they are intricately
entwined in the complex process of brain tissue development
and adult brain homeostasis, interacting with virtually every cell
type in the brain to orchestrate non-immune as well as classically
immune-related processes. Microglial cellular functionality may be
perturbed in one of two ways: through (1) toxic gain-of-function,

as exemplified by chronically activated microglia that fail to
resolve ongoing proinflammatory cytokine and neurotoxin
production (e.g., plaque-associated microglia in Alzheimer’s
disease [62]), or (2) loss of beneficial or protective function. An
example of the latter may be found in the failure to appropriately
prune neuronal synapses in development, which may contribute
to autism spectrum disorders [63–65]. The extent to which these
changes contribute to brain disease depends on a multitude of
contextual factors, including brain age, existing disease pathology,
and disease-relevant genetic and environmental risk factors,
among others.
To gain insight into the roles they play, microglia may be

depleted via toxin-, genetic-, and pharmacological-based meth-
ods, and we have recently reviewed the comparative advantages,
disadvantages, and caveats of these different approaches [11]. To
serve as an illustration, our lab has previously developed
pharmacological paradigms of microglial depletion with inhibitors
of colony-stimulating factor 1 receptor (CSF1R), such as PLX3397
and PLX5622, signaling through which microglia are dependent
for survival [10, 66–71]. Inhibitor-induced depletion of microglia
occurs in the absence of behavioral deficits, cytokine storm, brain
pathology, or replacement by peripheral myeloid cells [10] and
appears to be indefinitely maintainable as long as inhibition is
continued (at least 6 months) [71]. Such approaches have been
utilized to study the effects that microglia exert on not only
neuronal and synaptic functions in health and disease [66, 67, 72]
but also on other glial cells. For instance, astrocyte reactivity is
detected in Huntington’s disease (HD) [45], and we reported
resolution of disease-associated astrogliosis with microglial
depletion via CSF1R inhibition in HD model mice [73] that is
similar to the observed effects of microglial depletion on astrocyte
reactivity in the context of methotrexate chemotherapy [61],
consistent with the increasingly studied function of microglia as
regulators of astrocyte responses.
Restoring CSF1R signaling following inhibitor treatment by

inhibitor withdrawal induces full repopulation of the microglial
niche via proliferation of surviving microglia [10, 74], which may
be exploited to correct dysfunctional microglial phenotypes by
replacing the old with new cells. This aspect of microglial biology
has been utilized to promote brain recovery after traumatic brain
injury (TBI) [75], neuronal lesion [76], and aging [77] by resolving
chronically activated or otherwise dyshomeostatic microglia
in vivo. When discussing CSF1R-based microglial depletion
models, it should be noted as an experimental caveat that CSF1R
is also expressed by peripheral myeloid cells, as well as microglia,
and accordingly, a growing number of studies are examining the
peripheral effects of CSF1R inhibition [71, 78–84]. However, such
peripheral off-target effects in studies focused on microglial
function may be controlled by utilizing subtypes or doses of
CSF1R inhibitors that achieve little to no blood-brain barrier (BBB)
penetrance in healthy adult mice [11], such as PLX73086 [85],
Ki20227 [86], or PLX3397 at 75 ppm [10]. Ultimately, by eliminating
microglia and observing the consequences of their absence and/
or renewal on brain physiology in homeostasis and disease and
whether these processes normalize injury- or disease-associated
deficits, we may make inferences about their function in the brain.
In this review, we will discuss recent findings regarding

microglial functionality in the developing and adult brain, with a
special focus on the more nebulous non-immune roles these cells
serve and how such functions may go wrong in disease. Microglia
exert top-down influence on all major components of the
modernly conceptualized tetrapartite synapse [87, 88], namely,
pre- and postsynaptic compartments [37, 89], glia [45, 55], and the
extracellular matrix (ECM) [72, 73, 90, 91]. The microglial
modulation of astrocytes and oligodendrocytes has been
reviewed eloquently elsewhere [22, 41–44, 54]. We will focus here
on the interactions between microglia and ECM compartments,
primarily regarding how the former influence the latter, and how
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this may relate to synaptic remodeling. Where appropriate, we will
draw from our expertise in microglial ablation techniques to
showcase the unique efficacy of these tools in elucidating general
principles of microglial biology and new ways in which they can
be utilized to drive novel discoveries in this field.

MICROGLIA AND THE EXTRACELLULAR MATRIX IN HEALTH
AND DISEASE
Perhaps more aptly considered the ‘glue’ of the nervous system
than glia themselves, the ECM is a highly complex and dynamic
molecular meshwork with roles in plasticity, biophysical protec-
tion, and cell signaling [87, 92–94]. While its role as an extracellular
scaffold is well known, less appreciated is the ability of the ECM to
limit, and thus functionally compartmentalize, the diffusion and
localization of key molecules [87], including neurotransmitters
[95, 96], ions [97–99], and membrane receptors [100–102].
Furthermore, matrix molecules such as the abundant chondroitin
sulfate proteoglycans (CSPGs), which consist of glycosaminogly-
can side chains attached to a core protein, may inhibit neurite and
axon growth [103–108], myelination and remyelination by
oligodendrocytes/OPCs [109–111], and neural stem cell migration
[112]. This has been classically illustrated in astrocytic glial scars
that form after injury (e.g., spinal cord injury) and serve as a
physicochemical barrier to neuronal recovery and axonal
regrowth, thought to be due in large part to the consequent
deposition of matrix components such as CSPGs into the
interstitial ECM by reactive astrocytes [111, 113–116]. This
interpretation is complicated by the discovery that certain glial
scar components (such as specific CSPG subtypes [117, 118]), and
the glial scar as a whole [119–121], both appear to facilitate axon
regeneration and neurite outgrowth. Additionally, disruption of
injury-induced astrocyte responses upstream of scar formation
impedes recovery by impairing injury containment, BBB repair,
and inflammation resolution [121–124], and astrocytes themselves
may adopt multiple reactive phenotypes that likely exist on a
functional spectrum [44, 125] and that may, in turn, be influenced
by proteoglycans [123, 126]. Whatever new findings future studies
may hold, it is clear that the ECM has a profound influence on
brain health and disease.
As in the case of astrocyte-mediated scar formation, the ECM

and interstitial environment critically regulate neuroinflammation
and the immune response. Structural components of the ECM and
products of its degradation may serve as damage-associated
molecular patterns (DAMPs) that induce or suppress microglial
reactivity by signaling through pattern recognition receptors (e.g.,
Toll-like receptors), as reviewed elsewhere [127–129]. For instance,
culturing microglia on a CSPG substrate in vitro induces microglial
activation, proliferation, and the expression of IGF-1, MMP-2, and
MMP-9, whereas pharmacological inhibition of CSPG production
with xyloside following spinal cord injury differentially alters
inflammation and cytokine production depending on the timing
of treatment [130]. Alternatively, disaccharides generated from the
degradation of CSPGs with the bacterial enzyme chondroitinase
ABC (ChABC) confer an activated noncytotoxic microglial pheno-
type that is associated with protection in experimental auto-
immune encephalomyelitis [131], spinal cord injury [130], and
multiple models of neurotoxicity [132, 133]. This observation may
serve as a confounding factor in studies on the effects of ECM on
microglia and inflammation that utilize ChABC, and therefore
should be kept in mind when designing such experiments. In
addition to the activation state, ECM components may also affect
microglial adhesion, migration, and morphology, as in the case of
cell-matrix signaling mediated by transmembrane ECM receptors
known as integrins [134–136]. However, rather than the autono-
mous effects of ECM on neuroimmunology, in this review we will
focus on the perspective of top-down microglial influences on the
matrix and how these processes relate to changes in the synaptic

landscape, while keeping in mind the bidirectional nature of ECM
−immune interactions.
In terms of composition, the brain ECM is made up largely of

proteoglycans, such as CSPGs and heparan sulfate proteoglycans
(HSPGs), glycoproteins, such as laminins and tenascins, and
glycosaminoglycans, such as the abundant hyaluronan [87, 93],
among other molecules (e.g., collagens) that together constitute
approximately 20% of the overall brain volume [96, 137]. The
structural molecules that constitute the brain ECM and the
proteases that are secreted to remodel it are produced by
neurons, astrocytes, microglia, and oligodendrocyte lineage cells
with varying degrees of overlap in terms of cellular origin
depending on the molecule in question [94, 111, 138, 139]. The
ECM can be partitioned into structural subtypes based on
organization and composition, which generally include (1) the
basement membrane of the BBB, (2) the diffuse ECM found in
interstitial and perisynaptic spaces, (3) the condensed, reticular
ECM that ensheathes neuronal subsets and their perisomatic
synapses to form structures known as perineuronal nets (PNNs),
and (4) the perinodal ECM that surrounds nodes of Ranvier within
axons and that displays compositional resemblance to PNNs
[94, 111]. Along with synaptic terminals and glial cells, the diffuse
perisynaptic matrix and the synaptic ECM of PNNs constitute the
fourth compartment and most recent addition to the conventional
model of synaptic function, the tetrapartite synapse [87, 93], and
recent studies report that both structures are dynamically
regulated by microglia in the homeostatic adult brain
[72, 73, 90, 91].

Perineuronal nets
Discovered by Camillo Golgi and dismissed by Ramón y Cajal as a
fixation artifact, perineuronal nets are specialized ECM structures
that condense in a reticular fashion around the soma and proximal
neurites (dendrites and axon initial segment) of neurons
throughout the brain during development [94, 140]. Although
PNNs are associated primarily with fast-spiking parvalbumin (PV)-
expressing GABAergic interneurons, particularly in the cortex of
the brain [141, 142], they are evident throughout the CNS and
across a variety of neuronal subsets [92, 94, 142–145] and are
generally (but not always) labeled with the lectin Wisteria
floribunda agglutinin [94]. These formations serve as a molecular
scaffold to stabilize and regulate the synapses they surround and
reach adult levels during the closure of critical periods of
neuroplasticity [92, 146], and the genetic or enzymatic removal
of PNNs or their components are capable of reinstating critical
period-like plasticity [146–149]. In line with their role as a synaptic
scaffold, PNNs have been proposed as the molecular basis of long-
term memory storage [150], and their experimental removal
disrupts the consolidation [151, 152] and recall [152, 153] of
various types of remote fear memories. Thus, the heightened
plasticity afforded by PNN loss may impair long-term memory
fidelity due to interference from new memory traces [92, 154, 155].
Physiologically, PNNs also protect host cells from neurotoxins such
as Aβ1-42 and oxidative stress [156, 157], regulate neuronal
excitability [158, 159], and augment neuronal firing by reducing
membrane capacitance akin to myelin sheaths [160], thereby
influencing excitatory-inhibitory balance. Furthermore, the
removal of PNN components alters synaptic transmission [161],
synaptic ion channel/neurotransmitter receptor localization [162],
and synapse number [163, 164]. While future experiments will
determine whether some of these effects at least partly result
from changes to the perisynaptic matrix rather than the PNN
proper, particularly in the case of brevican modifications [165],
these findings taken together underscore the truly multimodal
effects that the brain ECM in general, and PNNs specifically, exert
on the cells they associate with and enwrap.
Previous studies have postulated that microglia may drive PNN

loss in certain disease contexts due to their ability to secrete
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matrix-degrading enzymes (e.g., matrix metalloproteinases; MMPs)
and/or their molecular activators or inhibitors [166–169]. Indeed,
we have recently shown that CSF1R inhibitor-based microglial
depletion prevents disease-associated PNN reductions in models
of Huntington’s [73] and Alzheimer’s disease (AD) [90]. PNN
components were evident in microglia in both AD mouse and
human brain tissue, where they also colocalized with canonical
dense-core plaques [90]. That we observed similar effects on PNN
abundance in the relative absence of microglia across these
models is striking, both due to their differential etiologies—
intracellular vs. extracellular protein accumulation in the R6/2 HD
[170] and 5xFAD model of AD [171], respectively—and the
variable microglial phenotypes we observed, which resembled
“classical activation” in 5xFAD [90] but not R6/2 brains [73], where
they instead were associated with an interferon signature marked
by enrichment of type I (IFNɑ, IFNβ) and type II (IFNγ) signaling
pathways. In a similar vein, we extended these findings to Csf1r+/−

mice, a neurodegenerative model of adult-onset leukoencephalo-
pathy with axonal spheroids and pigmented glia (ALSP) [172, 173],
where early disease stage microglia that displayed homeostatic
marker loss, but not proinflammatory gene upregulation, induced
decreases in PNNs and presynaptic puncta (Arreola et al. [174]). In
the same study, we confirmed these changes with inducible
microglia-specific Csf1r haploinsufficiency (Cx3cr1+/CreERT2: Csf1r+/fl

mice) and their normalization following CSF1R inhibitor-based
depletion, validating the microglial origin of ALSP PNN and
synaptic deficits. In addition, a recent study reported that
microglial depletion with the specific CSF1R inhibitor PLX5622
prevents PNN loss induced by ketamine or 60 Hz light entrainment
[175]. Therefore, it appears that microglia drive PNN loss in
disease, as has been suggested based on temporal analysis of
microglial activation and their accumulation of net material in
prion disease [166, 176, 177] and following infection with human
or simian immunodeficiency virus (HIV or SIV), which preferentially
infect microglia and cause PNN degradation [168, 178, 179].
PNN deficits/decreases have also been observed across more

diverse diseases, many if not all of which are also generally
associated with microglial activation, including multiple sclerosis
[169], stroke [180–184], traumatic brain injury [185, 186], spinal
cord injury [187], epilepsy [188, 189], obesogenic high fat and high
sugar diet consumption [190], glioma [160], Alzheimer’s disease
[90, 191–193], and schizophrenia [167, 194–196]. The loss of
protective PNNs leaves PV+ and other enwrapped neurons
susceptible to injury [92, 156, 157], and accordingly, we found
that PNN reductions preceded decreases in PV+ neurons in AD
[90], where PV+ cells are particularly relevant to disease [197–200].
Indeed, PNN loss is associated with neuronal death and/or
degeneration in a number of disease contexts
[160, 169, 176, 180, 190, 193, 201]. It should be noted that several
studies failed to detect differences in PNN abundance in clinical
AD [202–205], and this may be partly attributable to the brain
region under investigation or the method of PNN labeling used.
While changes with non-diseased aging are less clear [90, 206–
208], we and others have found age-related reductions in PNN
density in older animals [90, 193, 208, 209], and discrepancies
across studies may depend on the inclusion of both sexes and the
brain region(s), mouse strain, and/or model organism being
studied.
Even more striking, however, is the observation that PNN

abundance is dramatically upregulated throughout the healthy
adult brain following microglial depletion (Fig. 1) [72, 73, 90].
While neurons and glia may both express components that
contribute to PNNs [94], neurons can express the core compo-
nents of nets themselves and are capable of forming PNNs in vitro
in the absence of glia [210]. For instance, neurons produce
aggrecan [211], the inducible neuron-specific removal of which
results in PNN ablation [147], as well as hyaluronan [212], which is
continuously secreted and serves as a backbone by tethering

associated CSPGs into PNNs with the aid of link proteins
[213–215]. Therefore, our findings suggest that microglia basally
regulate PNN density in the homeostatic brain, whether via direct
or indirect enzymatic degradation and/or phagocytosis, such that
their absence allows PNN components to accumulate. PNN
enhancements induced by microglial depletion are also associated
with increased excitatory and inhibitory synaptic connections to
excitatory cortical neurons, as well as augmented neural activity in
both cortical excitatory neurons and PV+ interneurons as assessed
by in vivo calcium imaging [72]. Importantly, no overt changes in
astrocytes were found in this study, as reported previously
following pharmacological depletion in wild-type (WT) mice with
either CSF1R inhibitor utilized [10, 71, 73]. Synaptic connectivity
and neural activity are both normalized following microglial
repopulation [72], which is consistent with the normalization of
PNN densities we observed under similar conditions of inhibitor
cessation following microglial elimination [216]. Loss of PNNs with
disease thus likely reflects a toxic gain-of-function in microglia of
this newly identified homeostatic role, whereby augmented or
complementary PNN-degradative processes are activated, either
via enhanced or alternative secretion of ECM-cleaving proteases or
their modulators, and/or increased phagocytosis. Nonetheless, it
remains possible that the effects reported here are mediated at
least in part through associated downstream non-microglial
pathways—such as astrocytes (e.g., via altered expression of gap
junction channel subunit connexin 30, which facilitates PNN
formation via inhibition of MMP9 expression [217]) or oligoden-
drocyte lineage cells [218], the population dynamics of which are
altered by microglial depletion [55, 74]—and future studies should
aim to resolve the distinct roles of glial and neuronal cells that
may also be involved in PNN remodeling.

Perisynaptic matrix
The vast majority (98%) of CSPGs within the CNS are found in the
general diffuse ECM, including the perisynaptic matrix, as opposed
to the highly specialized manifestations of the brain ECM that are
PNNs [94]. Many key molecules coexist in both the perisynaptic
matrix and in PNNs, so it is inherently difficult to tease apart the
effects of their manipulations as resulting from changes to one or
another ECM structure, particularly in the case of global genetic
ECM knockout models. For instance, while aggrecan is a requisite
component of the PNN backbone [147, 202, 219], the shorter
CSPG brevican may be considered a reciprocally critical molecule
to the perisynaptic ECM [165, 202, 215] and accumulates in
synaptic fractions following biochemical fractionation of brain
tissue [220, 221]. However, these CSPGs can be found across both
structures, so additional research will likely be required to
determine where and how they exert their effects on neuronal
and synaptic physiology, and the extent to which interactions
exist between ECM compartments. Interestingly, neuroglycan C (a.
k.a. CSPG-5) appears to localize to perisynaptic regions of
glutamatergic and GABAergic terminals and is often observed at
the edges of PNNs [222], and its loss results in presynaptic
functional deficits and premature elimination of synapses during
development [223].
Several approaches exist to study the perisynaptic vs. perineur-

onal matrix. Mice deficient in link proteins HAPLN1 and HAPLN4,
which serve to stabilize interactions between hyaluronan and
CSPGs in PNNs [87], have overall unchanged CSPG levels but fail to
incorporate these molecules into PNNs [94, 213, 224], and
therefore may provide a means of studying the effects of
disrupting these structures without affecting the perisynaptic
matrix and diffuse ECM at large. Microinjections of ChABC near
dendrites have also been successfully used to locally degrade
perisynaptic CSPGs while leaving PNNs intact [225]. Alternatively,
studies elucidating the function of the perisynaptic ECM could
focus on regions that naturally lack PNNs [226], and vice versa in
regions densely enriched with PNNs [227], although the effects of
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the perisynaptic matrix would not be entirely absent—just
relatively minimized—in the latter case.
Research by several groups in the past decade has begun to shed

light on the comparative composition of perisynaptic and PNN
matrices in the CNS, as well as the organizational frameworks that
distinguish them [161, 205, 215, 226–230]. The discovery of axonal
coats (ACs) serves as one such example of a well-characterized
perisynaptic matrix structure that exists as a separate entity from
classical PNNs [230]. These round structures of aggrecan- and
brevican-based ECM enwrap individual synaptic boutons contact-
ing neuronal dendrites and somata and sometimes comingle with

PNN components on associated neurons [215, 226, 230], with
hypothesized roles at the synapse in restricting neurotransmitter
spillover and receptor localization [87, 215, 227]. Although there is
some degree of overlap, perisynaptic ECM can be found around
neuronal subsets lacking PNNs [226, 230], as is the case for
dopaminergic neurons and glutamatergic principal neurons in the
substantia nigra and thalamus, respectively, on which presynaptic
ACs make contact [230].
Additionally, activation of dopamine receptors and subsequent

neuronal activity was shown in an elegant study to induce
proteolysis of perisynaptic brevican and aggrecan in the ECM

Fig. 1 Microglial depletion enhances perineuronal net abundance in the healthy adult brain. Immunohistochemically stained brain sections
from wild-type male mice aged 3 months that were treated with vehicle (Control) or the CSF1R inhibitor PLX5622 at 1200 ppm for 10 days
(Microglia-depleted). Brain sections were stained with antibodies against aggrecan (ACAN; AB1031, Millipore) and with the canonical PNN
marker Wisteria floribunda agglutinin (WFA; B-1355, Vector Labs). Effects are displayed as A whole-brain stitched images or B 20× confocal
images of the somatosensory cortex from the same brain sections (white boxes in (A)) together with IBA1 to show microglial depletion
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around excitatory synapses which, at least for brevican, was
mediated by ADAMTS-4/5 [229]. It has also been shown that
targeted perisynaptic matrix degradation induces structural
plasticity of dendritic spines (e.g., enhanced spine motility and
formation of spine head protrusions) [225] and similar structural
changes are associated with increased functional plasticity as
measured by LTP [231], and as such, CSPGs appear to restrict
plasticity in either case. Thus, changes in upstream perisynaptic
ECM could lead to downstream signaling-dependent changes in
synaptic plasticity and further alterations in associated ECM in an
increasingly complex, circuit-level process. Interestingly, we found
elevated interstitial CSPG deposition in the brain parenchyma of
both AD [90] and HD [73] mice, which may at least partially
account for some of the beneficial effects of ChABC injections in
related disease models that may have acted on the perisynaptic
ECM rather than (or in addition to) PNNs [232–234].
Suggesting a direct role for microglia in the regulation of

perisynaptic matrix-controlled synaptic plasticity, a recent study
by Nguyen et al. determined that, in response to neuronal IL-33,
microglia in the adult brain phagocytose and clear perisynaptic
ECM components to promote dendritic spine formation, synaptic
plasticity, and fear memory precision [91]. Importantly, they found
that inhibition of this pathway decreased microglial engulfment of
aggrecan and consequently enhanced aggrecan puncta density
and deposition at the synapse, in addition to increasing total
intact brevican while reducing levels of proteolyzed brevican.
Thus, as in our work, loss of microglial function results in enhanced
ECM deposition in the homeostatic brain. The occurrence of this
phenomenon across multiple ECM compartments (i.e., the
perisynaptic matrix [91] and perineuronal nets [73, 90])
together suggests a fundamental homeostatic role for microglia
in ECM degradation and remodeling, which may be required for
subsequent remodeling of synapses surrounded and stabilized by
such ECM. These findings as they relate to PNNs are illustrated as a
working model in Fig. 2. It should be noted that microglia may
also act as a source of CSPGs and other ECM molecules in the
interstitial matrix under certain conditions [139, 235], but this
appears to represent a less prominent role compared to the
negative regulatory influence they exert across ECM
compartments.

Potential mechanisms of microglial ECM regulation
Although microglia are linked to ECM remodeling in disease (i.e.,
PNN loss [73, 90, 166–169, 180, 181, 190]) and now also in the
healthy homeostatic brain [72, 73, 90, 91], the molecular
mechanism(s) by which this occurs are unclear. As observed with
synapses during developmental pruning [37, 236], microglia may
directly engulf and phagocytose ECM components. Indeed,
aggrecan colocalizes with lysosomal CD68 in microglia, a marker
of phagocytosis, and disrupting IL-33-based ECM engulfment by
microglia reduces CD68+ lysosome number [91]. Furthermore,
proteoglycans and PNN material can accumulate within disease-
associated microglia/macrophages [90, 237] and in microglia
following ketamine treatment [175], and phagocytic genes (e.g.,
Itgax, Clec7a, and Trem2) are upregulated in 5xFAD mice [67, 71],
particularly in plaque-associated microglia [62], where we
observed widespread PNN loss [90]. However, it is likely that
microglial release of degradative enzymes is also involved in ECM
turnover processes, especially as it applies to the remodeling of
PNNs, in which CSPGs, tenascins, hyaluronan, and link proteins are
more tightly woven together compared to the diffuse matrix [238].
Several proteases are immediately apparent candidates based

on the capability of microglia to produce them and their ability, in
turn, to degrade ECM components and core PNN molecules. These
proteases primarily include MMPs, ADAMTS, and cathepsins.
Microglia may also shape PNNs indirectly via modulators of
protease activity, as in tissue inhibitors of metalloproteinases
(TIMPs) [239–241], or by regulating protease or TIMP expression by

other cells. For instance, it has been suggested [169] that
glutamate released by activated microglia [242] could bind
neuronal glutamate receptors and induce neuronal MMP expres-
sion [243]. While these are important and plausible mechanisms,
for the purpose of conciseness, this review will focus on the direct
action of microglia-sourced protease candidates.
MMPs are expressed at low to undetectable levels under

homeostatic conditions in the adult brain and are upregulated in
injury and disease; taken together, they have the capacity to
degrade the entire gamut of ECM constituents [239]. Although not
exclusively, MMP-2 and MMP-9 are secreted by microglia
[244, 245] and act on a wide range of overlapping substrates,
such as link proteins and aggrecan [239]. Substrate specificity is
also evident in certain cases, as in the digestion of tenascin-C [246]
and brevican [247] by MMP-2 but not MMP-9. MMP-2 and/or
MMP-9 are upregulated by microglia in disorders where PNN
breakdown occurs, such as stroke [248, 249], multiple sclerosis
[250, 251], and glioma [252, 253], and pharmacological MMP
blockade in glioma ameliorates enhanced MMP-2/9 activity and
associated PNN loss [160]. While baseline PNNs are largely
unchanged in MMP-9−/− mice, developmental monocular
deprivation-induced PNN degradation is prevented, and ocular
dominance (OD) plasticity is attenuated [254], findings mirrored in
adult mice in the context of light reintroduction-induced plasticity
following dark exposure [255]. Additionally, genetic reduction
(e.g., haploinsufficiency) of MMP-9 [256] as well as MMP-2/9
inhibitor treatment [257] restores developmental PNN impair-
ments in Fmr1 knockout mice, a model of Fragile X Syndrome
(FXS); interestingly, MMP-2/9 inhibitor treatment also enhances
WT PNN formation in the developing auditory cortex [257]. Of
course, other MMPs may also play a role in brain ECM remodeling,
as suggested by microglial Mmp14 upregulation following
treatment with IL-33, which endogenously promotes ECM
clearance and dendritic spine formation [91]. Corroborating this,
we also independently identified Mmp14 upregulation in Csf1r+/−

mice, a model of leukoencephalopathy and microglial dysho-
meostasis [172, 173], and confirmed its capacity to degrade PNNs
via in vivo injection of recombinant MMP-14 (K.N.G.,
unpublished data).
In addition to MMPs, microglia can also express ADAMTS-4

[91, 258, 259], which cleaves aggrecan [260] and brevican [247] at
sites distinct from MMPs and, unlike MMPs, degrades CSPGs
without affecting laminin [261]. Furthermore, the effects of MMP-2
and ADAMTS-4 are additive in degrading brevican [247], which
may offer one plausible explanation for the ability of exogenous
ADAMTS-4 to degrade PNNs in amyotrophic lateral sclerosis
model SOD1G93A mice in which PNN breakdown had already
occurred, but not WT mice [262, 263]. Microglial cathepsins also
represent prime candidates in brain ECM turnover. Canonically
localized to and functioning within the endolysosomal pathway to
degrade proteins in bulk, several secreted cathepsins exist,
including cathepsins S (CTSS) and B (CTSB) [244, 264]. CTSB is
secreted by microglia following LPS activation [265], as is CTSS,
which is also upregulated by brain lesion injury [266] and in bulk
tissue of 5xFAD mice where we have reported PNN deficits
(hippocampus, cortex) [71, 90]; it should be noted in the latter
case that we did not observe significant upregulation of any Mmp
genes in any regions examined [71]. We found that Ctss expression
in the brain most closely follows the kinetics of microglial
elimination and repopulation [74], which increases [72, 73, 90]
and normalizes [216] PNN density, respectively, and indeed, its
transcripts were consistently absent in microglia-depleted brains
in our studies [71, 73, 74, 216]. CTSS is functionally stable at the
neutral pH of the extracellular space, and under such conditions, it
can efficiently degrade CSPGs neurocan and phosphacan, where
CTSB at several-fold greater concentrations could not [266].
Further supporting the plausibility of CTSS-based ECM remodeling
in particular, CTSS−/− mice display ameliorated tenascin-R
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reduction following facial nerve axotomy [267], which induces
CTSS (but not CTSB) upregulation at the protein and mRNA levels,
and incubation of mouse brain sections with CTSS eliminates
WFA+ PNNs [268].
On the other hand, the upstream signals that trigger the

clearance of ECM by microglia, whether by protease secretion and/
or phagocytosis, and whether this differs across ECM compart-
ments, together remain largely unknown. Neuronal IL-33 guides the
engulfment of perisynaptic ECM by microglia in the homeostatic
adult hippocampus [91], but it is unclear whether this pathway also
guides the microglial regulation of PNNs. Experimental designs
focused on the latter may benefit from targeting the expression of
IL-33 or other candidate signaling molecules in PV+ interneurons
(e.g., through a Cre-lox system), given the close association
between this neuronal subtype and PNNs. As microglia appear to
basally regulate PNN abundance, with their depletion enhancing
PNN densities in the healthy brain [72, 73, 90], the signal(s)
regulating this process should theoretically be homeostatically
secreted. The CX3CL1-CX3CR1 axis is already well established as a
major pathway of neuron-microglia communication that is involved
in synaptic pruning and development [38, 269, 270] as well as
microglial mobility, motility, and activation [270–272] and therefore
seems to be a feasible candidate in the regulation of this process.
However, PV+ neuron-associated PNN densities remain unchanged
in Cx3cr1−/− mice [273], and thus, this pathway appears to be
uninvolved in PNN remodeling by microglia.
The homeostatic microglial receptor P2RY12 may instead serve

to regulate microglial-PNN interactions, as blocking P2RY12 with
the specific antagonist clopidogrel prevents ketamine-induced

loss of PNNs in adult mice [175] and inhibits developmental ocular
dominance plasticity [274], which is thought to be typically
restricted by the formation of PNNs [146]; therefore, future studies
may benefit from evaluating the functionality of P2RY12 in this
regard. CSF-1/IL-34 could also represent putative regulatory
molecules, as they are constantly produced in the brain at
baseline and control microglial survival and cell densities by
signaling through CSF1R [275]. We found that Csf1r haploinsuffi-
ciency (Csf1r+/−), as well as low-grade, brain-penetrant pharma-
cological CSF1R inhibition (150 ppm PLX5622), induced PNN
deficits, which were rescued following microglial depletion with
high doses of CSF1R inhibitors (Arreola et al., in press).
Furthermore, alternative or complementary signaling pathways
may be involved in the regulation of PNNs by microglia under
conditions of dyshomeostasis and disease (e.g., via the detection
of DAMPs by microglial TLRs [252]) which may, in turn, vary based
on disease etiology and pathogenesis. Toxic gain- or loss-of-
function in homeostatic signaling pathways regulating microglia-
PNN interactions in the healthy brain may also occur in disease.
Ultimately, the role of microglia as sculptors of PNNs and the ECM
in general—particularly in the healthy brain—is just beginning to
be elucidated, and as such, the signals promoting this process, as
well as the downstream mechanisms mediating such sculpting,
require further study.
The proteases proposed in this section are implicated in

remodeling not only the ECM, but synapses as well
[264, 276, 277]. This may underscore the functional relationship
between the two structures—to sculpt synapses, an increasingly
salient role of microglia, the matrix in which they are embedded

Fig. 2 Microglia regulate perineuronal net and synaptic integrity in health and disease. In this working model, microglia continuously
maintain baseline PNN and perisynaptic extracellular matrix integrity in the healthy adult brain through the sustained release of proteases (or
protease inhibitors/activators) and/or phagocytosis (not pictured). The absence of local microglia through experimental depletion enhances
PNN deposition and density, in addition to synaptic number. In disease or injury, microglial activation or dyshomeostasis leads to upregulation
of phagocytosis and/or protease secretion, resulting in PNN breakdown and excessive synaptic elimination, the latter of which may occur
through related and/or unrelated cellular pathways
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would presumably also have to be restructured. Ongoing research
continues to elucidate the bidirectional interactions between the
ECM and synapses, but the involvement of microglia in this
process has just begun to be examined [91]. Therefore, we will
next discuss established findings on synaptic regulation by
microglia in the context of specific and relevant ECM studies to
shed light on putative mechanisms that may underlie the
relationship between these components of the tetrapartite
synapse.

MICROGLIA AT THE SYNAPSE
Synaptic pruning and formation in development
Thorough monitoring of the CNS parenchyma by microglia [13]
aptly positions these cells to respond rapidly to changes in the
synaptic microenvironment. In the healthy brain, they interact
with pre- and postsynaptic compartments, perisynaptic astrocytes,
and the local extracellular milieu [88, 89, 278, 279]. This has thus
far been best studied during development when microglia prune
excess synapses [37, 38] to promote the removal of extranumer-
ous or weak synapses in the refinement of neuronal networks
[21, 35]. Accumulating evidence has implicated traditionally
immune-associated molecules as critical elements in synaptic
refinement. For example, complement cascade elements (e.g., C1q
and C3) localize to synaptic compartments to tag synapses for
elimination [39, 280, 281], inducing phagocytosis by complement
receptor 3 (CR3)-expressing microglia in a neural activity-
dependent manner [37]. On the other hand, genetic loss of
CX3CR1, a receptor primarily expressed by microglia in the brain,
is also associated with synaptic pruning deficits, resulting in an
excess of dendritic spines, immature synapses, and immature
brain circuitry in development [38, 269, 270] that persists as
impaired synaptic transmission and functional brain connectivity
in adults [64].
Microglia can also induce synapse formation, as shown by the

addition of developing microglia to cultured hippocampal
neurons in vitro, which increases dendritic spines and excitatory
and inhibitory synapses via microglial IL-10 [282]. While this
process did not require direct microglial contact, a recent study
utilizing in vivo two-photon imaging of early postnatal (P8-P10)
mouse brains observed microglial contact-induced filopodia
formation on dendrites, which was reduced following minocycline
treatment [16]. Decreased dendritic spine densities were observed
in the same study following microglial depletion [16], which
resembled the reduced spine formation reported by another
group under similar circumstances [283]. However, caution must
be taken regarding the interpretation of this result, as both studies
utilized diphtheria toxin-based models of microglial ablation,
which are associated with inflammation (e.g., upregulation of TNF-
ɑ, IL-1β [8] or an interferon response [284]) that is not seen with
genetic- or inhibitor-based models due to the manner in which
microglial death is achieved [11]. Accordingly, IL-1β attenuates
synaptic formation induced by IL-10 [282], and postnatal CSF1R
inhibitor-based microglial depletion instead results in excess
synapses [285] that are normalized following microglial repopula-
tion [286]. Interestingly, loss of CSPG-5 (neuroglycan C), which
normally localizes to the perisynaptic space [222], results in
impaired presynaptic maturation as well as synaptic elimination
that occurs earlier than normal in cerebellar Purkinje cells [223],
which microglia survey and regulate [287–290]. As early develop-
mental synaptic deficits are observed in other brain regions with
CSPG-5 deficiency [291], together, this suggests a role for
perisynaptic matrix remodeling during synaptic pruning and
maturation.
It is perhaps no coincidence that PNNs begin forming in

development soon after synaptic pruning is completed by
microglia [38, 39], ~P14 in mouse cortex (finished by P40) and
earlier in subcortical regions [213, 292], which would place them in

ideal positions to guide PNN formation around newly refined
synapses, e.g., through phagocytosis and/or controlled enzymatic
degradation. MMP-2/9 inhibitor treatment enhances basal PNN
density in postnatal mice, indicating that protease activity is
indeed a limiting factor in their developmental construction [257].
Of note, MMP-2 and MMP-9 expression peaks in early postnatal
development, where they codistribute with foci of proteolytic
activity in neuropil, and with markers of synapses (PSD-95,
synaptophysin) and growing axons, suggesting that these
proteases actively shape the perisynaptic space associated with
synapse formation [293]. Furthermore, the formation of adult
levels of PNNs around visual cortical neurons by the end of the
critical period restricts OD plasticity [146], such that their ablation
in adults restores OD plasticity [146, 147, 149, 213], and the loss of
microglial P2RY12 [274] (but not CX3CR1 [294]) or microglia
themselves with CSF1R inhibition [295] prevents normal OD
plasticity altogether.
Therefore, we postulate that the absence of OD plasticity

following such microglial loss-of-function may be due to
consequent failure to sculpt PNNs, which may form prematurely
in these instances. Interestingly, synaptic elimination in the barrel
cortex following developmental whisker trimming—which also
specifically reduces barrel cortex PNNs [296]—requires CX3CR1
[297], while neither CX3CR1 [294] nor C1q [298] appear necessary
for monocular deprivation-induced OD plasticity or related visual
cortex synaptic remodeling. Thus, microglial mechanisms of
synaptic sculpting are context-dependent, and this may also be
the case for the regulation of nearby ECM. Future studies should
investigate to what extent microglia and the microglial proteome
are involved in regulating PNN formation during critical period
closure and how this may relate to synaptic pruning. This could be
explored via developmental or critical period CSF1R inhibition to
determine whether PNNs appear earlier, and further delineated
with a more specific approach (e.g., protease inhibitors) to
determine exactly how microglia influence this process.
The pursuit of clarification regarding mechanisms that dictate

which synapses are eliminated or spared has uncovered a delicate
balance between ‘eat me’ and ‘do not eat me’ signals at the
neuronal level. Phosphatidylserine (PS) localized to synaptic
elements is one such molecule by which the CNS can modulate
synaptic elimination [299, 300]. While initially recognized as a
glycerophospholipid that is externalized on the cell membrane
during the process of apoptosis to act as an ‘eat-me’ signal for
phagocytes [301], synaptic elimination is partially abrogated
in vitro by blocking PS via the addition of Annexin V or by
culturing with microglia deficient for the phagocytic receptor
TREM2 [300]. In vivo, synaptic PS exposure in the hippocampus
and retinogeniculate areas parallels the temporal dynamics of
microglial-mediated pruning, and C1q-deficient mice displayed
increases in presynaptic PS exposure and reductions in PS
phagocytosis by microglia, thereby implicating the complement
system in PS-mediated synaptic pruning [300]. Aside from
complement-related mechanisms, microglial loss of GPR56
decreased engulfment of PS+ synaptic inputs and consequently
increased synapse number in the hippocampus and dorsal lateral
geniculate nucleus [299], suggesting that multiple signaling
pathways involved in the regulation of microglial pruning appear
to converge on synaptic PS expression.
On the other hand, a recent study identified that CD47 signaling

to the SIRPα receptor serves as a “do not eat me” signal that
prevents excessive synaptic pruning in the retinogeniculate system
during early development [236]. CD47 is enriched, and microglial
expression of SIRPɑ is similarly increased during peak pruning, with
CD47 localizing to more active synapses, and disruptions to either
via knockout of CD47 or SIRPα increased microglial engulfment and
reduced synapse number [236]. Studies such as these provide
insight into the relationship between microglia and synaptic
structures and, importantly, describe how the developing nervous
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system can exert spatiotemporal control over synapse elimination.
Along these lines, a subpopulation of GABA-receptive microglia has
recently been identified that specifically prunes inhibitory synapses
in development [302]. Importantly, ablating the microglial GABAB

receptor subunit GABAB1R to disrupt GABAB signaling in microglia,
which mediates this effect, did not alter PNN densities [302].
Additionally, recent proteomic studies have identified a number of
putative MMP-9 substrates, including nuclear, cytoplasmic, and
extracellular proteins not solely involved in the ECM but that may
have implications in synaptic plasticity, including Annexin V [303].
Intriguingly, it appears that MMP-based proteolytic cleavage of
SIRPα in response to neuronal activity releases an extracellular
SIRPα domain, which binds to presynaptic CD47 and promotes the
maturation of presynaptic terminals [304]. ECM molecules may also
interact with synaptic pruning pathway elements, as CSPGs bind
and potentially inhibit C1q functional domains [305, 306], whereas
loss of CD47 in glioblastoma cells enhances the expression of
tenascin-C and consequent phagocytosis by tumor-associated
macrophages [307].
While the prevailing theory is that microglia phagocytose whole

synapses, recent advances in microscopy are facilitating greater
direct imaging of microglial interactions with synapses at
resolutions that may reveal more nuanced roles in synaptic
remodeling. Such techniques have allowed researchers to observe
microglia contacting presynaptic elements in hippocampal
explants and subsequently phagocytose only fragments of the
synapse in a process termed presynaptic trogocytosis [308], a
phenomenon recently confirmed in vivo in Xenopus laevis
tadpoles [309]. However, while Weinhard et al. found that
complement signaling (specifically CR3-mediated) was not
required for trogocytosis [308] as it is in developmental
retinogeniculate pruning [37], complement signaling did regulate
trogocytosis of retinal ganglion cell axons in Xenopus laevis [309].
In the latter case, neuronal overexpression of the synapse-
associated amphibian regulator of complement activation 3
(aRCA3) inhibited trogocytosis and axonal pruning, whereas
expression of axon membrane-bound complement C3 fusion
protein enhanced axonal pruning [309]. Placing this in the context
of the ECM, several studies suggest that perisynaptic axonal coats
are synthesized by presynaptic neurons [205, 215, 226, 230] and
thus may have particular relevance in the microglial trogocytosis
of presynaptic components [308] in that this process might
necessarily involve concurrent remodeling of the presynaptically
generated ECM that supports synapses in these instances as well
as a mechanism in place to allow such preferential targeting by
microglia.

Synaptic elimination in the healthy adult brain and its
dysregulation in disease
Although largely studied in the context of development thus far,
growing research indicates that microglia maintain their roles as
synaptic sculptors of the adult homeostatic brain, a function that
may go awry in disease. Supporting this, we have demonstrated
that elimination of microglia in healthy adult mice with CSF1R
inhibitors increases the total density of hippocampal and visual
cortex dendritic spines and PSD95 and synaptophysin immuno-
labeling in the hippocampus [66, 76]. Similarly, microglial
elimination increases excitatory and inhibitory connections to
visual cortex excitatory neurons and the neural activity of
excitatory neurons and PV+ interneurons [72], in addition to
enhancing PNN density [72, 73, 90], confirming that microglia
serve as regulators of the synaptic and ECM landscape
throughout adulthood. Indeed, as in development [37], hippo-
campal microglia continue to perform activity- and complement-
dependent synaptic elimination to mediate normal memory
turnover in the healthy adult brain, such that complement
inhibition or microglial depletion prevents forgetting of contextual
fear memories [40].

Neurogenic niches in the adult CNS, such as the olfactory bulb
(OB) and dentate gyrus (DG) of the hippocampus, provide unique
perspectives on synaptic modulation by microglia, as new neurons
are continuously born, develop, and integrate into functional
neuronal circuits in an already mature brain environment.
Accordingly, elimination of microglia via CSF1R inhibition is
reported to reduce the spine density of developing but not
mature adult-born granule cells (abGCs), suggesting that microglia
are necessary for the proper development of synapses in adult-
born neurons [310]. This is mediated in part by CX3CR1 [310], as
paralleled by a separate report on impaired synaptic integration
and reduced spine density at the afferent level in adult-born
granule neurons of the hippocampal DG in Cx3cr1−/− mice [273].
Another group found that microglial depletion with the same
CSF1R inhibitor resulted in enhanced spine density on developing
abGCs, but these spines were smaller and functionally immature;
again, the effects were largely limited to young but not mature
abGCs [311]. Taken together, these data suggest that the
requirement of microglial CX3CR1 for the synaptic refinement of
adult-born neurons in the OB [310] and DG [273] is a necessity
only in their developmental stages, which could be determined
with the use of inducible rather than constitutively deficient
Cx3cr1−/− mice.
Interestingly, the absence of CX3CR1-mediated bidirectional

communication between microglia and neurons in Cx3cr1−/− mice
was also sufficient to enhance WFA+ and aggrecan deposition in
the DG, where synaptic integration was impaired [273]. However,
the authors found no difference in PNN density here, and the
elevated proinflammatory profile of this region (e.g., TNF-ɑ, IL-6)
[273] suggests that these changes could primarily be localized to
the diffuse ECM via microglial activation of neurotoxic astrocytes
[45] and their increased production of neurite-inhibitory CSPGs in
turn [114]. In fact, activation of primary cortical microglia with
polyinosinic-polycytidylic acid in vitro induced secretion of TNF-ɑ
and IL-6 in the culture medium, in addition to several chemokines,
and upregulated expression of Mmp2 and Mmp9, and treatment of
hippocampal neurons with this microglial-conditioned medium
impaired PNN structure [312]. Treatment of PNN-ensheathed
neurons with this medium also led to a decrease in inhibitory
vGAT presynaptic puncta but an increase in PSD-95 and gephyrin
postsynaptic markers, whereas both inhibitory vGAT and excita-
tory vGlut presynaptic puncta were reduced while postsynaptic
markers were unaffected in treated non-PNN-ensheathed neurons,
underscoring the unique and complex role of PNNs in scaffolding
and regulating embedded synapses [312]. In line with this
complexity, others have reported that PNN disruption by genetic
deletion of its components in primary hippocampal neurons
in vitro transiently increases synaptic densities, only to later
reduce them [164]. In vivo, the situation is likely different if not
more complicated, as microglia can make direct contact with
PNNs and synapses, potentially remodeling these structures via
phagocytosis [40] as well as through secretion of proteolytic
factors.
While synaptic elimination is known to be a normal process in

brain development and homeostasis, the dysregulation of this
process is recognized as an early feature of neurodegeneration
[313–315]. Synaptic loss, as opposed to neuronal loss, serves as
the most accurate indicator of cognitive decline [313, 316, 317].
Under neurodegenerative conditions, microglial-induced synapse
loss may be viewed as a toxic gain-of-function with respect to
normal synaptic-regulating processes [318], as in models of AD,
where dysfunctional activation and upregulation of complement
proteins C1q and C3 [319–321] or loss of microglial SIRPɑ [322]
result in excessive phagocytosis of synaptic elements. Augmented
complement-mediated synaptic loss also appears to occur in
aging [323]. Microglia can also increase the expression of
synaptotoxic factors such as TNF-ɑ in neurodegeneration, which
produces synaptic deficits by inducing excitotoxicity [324, 325] or

J.D. Crapser et al.

2480

Cellular & Molecular Immunology (2021) 18:2472 – 2488



by promoting neurotoxic astrocyte reactivity [45]. Elimination of
microglia or attenuation of microglial activation under neurode-
generative conditions or aging, however, leads to improved
functional outcomes accompanied by restoration in spine number
and synaptic surrogates [66, 67, 71, 77, 326, 327]. Thus, microglia
play critical roles in the maintenance and pathological elimination
of synaptic elements in disease (as reviewed previously [328]).
Few studies have explored the roles of microglia in the ECM as

they relate to changes in synaptic health and number in
neurodegenerative contexts. Microglial depletion prevents PNN
loss in the 5xFAD hippocampus [90] and the downregulation of
hippocampal synaptic genes at later time points [71], but further
investigation is required to clarify whether these changes
are occuring in the same neurons. Neurodevelopmental disorders
may provide another avenue to investigate such processes, as in
FXS, which is caused by genetic hypermethylation-induced loss of
neurite-localized fragile X mental retardation protein (FMRP) [329].
Minocycline-based inhibition of MMP9 [330] or Mmp9 deficiency
[331] rescues the immature dendritic spine phenotype in fragile X
mouse hippocampal neurons in vitro, and pharmacological
blockade [257] or genetic reduction [256] of MMP-9 restores
in vivo cortical PNN density in FXS mice, as discussed earlier. Future
studies should investigate how these ECM and synaptic effects
may be related in neurons from the same brain region and under
the same experimental conditions. Similarly, anomalous synaptic
deficits are postulated to be important components of pathology
associated with schizophrenia, as reduced dendritic spine densities
[332–334] and disrupted PNNs in similar cortical regions (e.g., layer
3 of the prefrontal cortex [195]) have been reported, in addition to
aberrant microglial elimination of synapses in schizophrenia
patient-derived neural cultures [335] that is related in part to
disease variants in complement component 4 (C4) [335, 336].
Given the increasingly reported roles microglia appear to play in
ECM modulation, both at the level of PNNs and the perisynaptic
matrix, it stands to reason that such synaptic, ECM, and microglial
changes may be related in these situations as well. Overall, studies
into neurodegenerative and neurodevelopmental disorders are
increasingly alluding to complex interactions between glia and
other elements of the tetrapartite synapse that may be determined
to underlie major aspects of disease pathophysiology.

CONCLUDING REMARKS
Altogether, the data thus far suggest that microglia serve a
regulatory role in the modification of ECM and synaptic
components; the goal now is to elucidate the dynamics of this
relationship. Specifically, future studies should investigate how
microglia mediate such ECM modifications (whether through
protease secretion, phagocytosis, or a combination of both), how
this process is resolved at the perisynaptic vs. PNN level, and how
such alterations interface with synaptic function in CNS develop-
ment, health, and disease. In terms of proteases, we propose
MMPs, ADAMTS, and/or cathepsins as the most feasible mechan-
istic candidates given the current data, whether these molecules
are directly expressed by microglia or are instead influenced by
the secretion of other microglial factors in a more indirect manner.
At a more general level, it will be interesting to determine the

extent to which PNN deficits are a common hallmark of
neurodegenerative diseases, and furthermore how this relates to
differential microglial phenotypes. It is also possible that some of
the deleterious effects of diseased microglia on PNN integrity are
mediated, if even only in part, by other glia (e.g., astrocytes [217]
or oligodendrocytes [218]), which are often dysregulated con-
current with microglial dysfunction. However, the minimal
changes in astrocytes evoked by microglial depletion in the
homeostatic brain—particularly in comparison to the consequent
dramatic and relatively ubiquitous upregulation of PNNs—
together with the collective findings reviewed here suggest a

central role for microglia in ECM and synaptic regulation. Thus, a
novel role for microglia emerges in the basal regulation of PNNs
and ECM in the healthy adult brain, and as with other microglial
functions, this may serve as a valuable therapeutic target if, or
when, it is pathogenically altered in disease.
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