Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic regulation of innate lymphoid cells in the mucosal immune system

Abstract

The mucosal immune system is considered a local immune system, a term that implies regional restriction. Mucosal tissues are continually exposed to a wide range of antigens. The regulation of mucosal immune cells is tightly associated with the progression of mucosal diseases. Innate lymphoid cells (ILCs) are abundant in mucosal barriers and serve as first-line defenses against pathogens. The subtype changes and translocation of ILCs are accompanied by the pathologic processes of mucosal diseases. Here, we review the plasticity and circulation of ILCs in the mucosal immune system under physiological and pathological conditions. We also discuss the signaling pathways involved in dynamic ILC changes and the related targets in mucosal diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Spits, H. & Cupedo, T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647–675 (2012).

    CAS  PubMed  Google Scholar 

  2. 2.

    Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    CAS  PubMed  Google Scholar 

  4. 4.

    Warner, K. & Ohashi, P. S. ILC regulation of T cell responses in inflammatory diseases and cancer. Semin. Immunol. 41, 101284 (2019).

    CAS  PubMed  Google Scholar 

  5. 5.

    Fachi, J. L. et al. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. J. Exp. Med. 217, 1–18 (2020).

  6. 6.

    Seillet, C. et al. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat. Immunol. 21, 168–177 (2020).

    CAS  PubMed  Google Scholar 

  7. 7.

    Wang, S. et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171, 201–16 e18 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Seehus, C. R. et al. Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nat. Commun. 8, 1900 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cella, M. et al. Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat. Immunol. 20, 980–991 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rankin, L. C. et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat. Immunol. 17, 179–186 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Miller, D. et al. Innate lymphoid cells in the maternal and fetal compartments. Front Immunol. 9, 2396 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Koues, O. I. et al. Distinct gene regulatory pathways for human innate versus adaptive lymphoid cells. Cell 165, 1134–1146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Duffin, R. et al. Prostaglandin E(2) constrains systemic inflammation through an innate lymphoid cell-IL-22 axis. Science 351, 1333–1338 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114–119 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kobayashi, T. et al. Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. Cell 176, 982–97 e16 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Golebski, K. et al. IL-1beta, IL-23, and TGF-beta drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nat. Commun. 10, 2162 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Bjorklund, A. K. et al. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451–460 (2016).

    PubMed  Google Scholar 

  18. 18.

    Bielecki, P. et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature 592, 128–132 (2021).

  19. 19.

    Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–46. e13 (2016).

    CAS  PubMed  Google Scholar 

  20. 20.

    Wang, S. et al. Transdifferentiation of tumor infiltrating innate lymphoid cells during progression of colorectal cancer. Cell Res. 30, 610–622 (2020).

  21. 21.

    Harly, C. et al. Development and differentiation of early innate lymphoid progenitors. J. Exp. Med. 215, 249–262 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17, 646–655 (2016).

    CAS  PubMed  Google Scholar 

  23. 23.

    Lim, A. I. et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213, 569–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Silver, J. S. et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626–635 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bal, S. M. et al. IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    CAS  PubMed  Google Scholar 

  27. 27.

    Bernink, J. H. et al. c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat. Immunol. 20, 992–1003 (2019).

    CAS  PubMed  Google Scholar 

  28. 28.

    van de Pavert, S. A. & Vivier, E. Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. Int. Immunol. 28, 35–42 (2016).

    PubMed  Google Scholar 

  29. 29.

    Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    CAS  PubMed  Google Scholar 

  30. 30.

    Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).

    CAS  PubMed  Google Scholar 

  31. 31.

    Vonarbourg, C. et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33, 736–751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Mazzurana, L. et al. Suppression of Aiolos and Ikaros expression by lenalidomide reduces human ILC3-ILC1/NK cell transdifferentiation. Eur. J. Immunol. 49, 1344–1355 (2019).

    CAS  PubMed  Google Scholar 

  33. 33.

    Parker, M. E. et al. c-Maf regulates the plasticity of group 3 innate lymphoid cells by restraining the type 1 program. J. Exp. Med. 217, 1–22 (2020).

  34. 34.

    Koh, J. et al. IL23-producing human lung cancer cells promote tumor growth via conversion of innate lymphoid cell 1 (ILC1) into ILC3. Clin. Cancer Res. 25, 4026–4037 (2019).

    CAS  PubMed  Google Scholar 

  35. 35.

    Vacca, P. et al. Human natural killer cells and other innate lymphoid cells in cancer: friends or foes? Immunol. Lett. 201, 14–19 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    Morita, H. et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J. Allergy Clin. Immunol. 143, 2190–201 e9 (2019).

    CAS  PubMed  Google Scholar 

  37. 37.

    Howard, E. et al. IL-10 production by ILC2s requires Blimp-1 and cMaf, modulates cellular metabolism, and ameliorates airway hyperreactivity. J. Allergy Clin. Immunol. 147, 1281–1295 (2021).

  38. 38.

    Bando, J. K. et al. ILC2s are the predominant source of intestinal ILC-derived IL-10. J. Exp. Med. 217, 1–9 (2020).

  39. 39.

    Miyamoto, C. et al. Runx/Cbfbeta complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation. Nat. Commun. 10, 447 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Almeida, F. F. & Belz, G. T. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection. Mucosal Immunol. 9, 1103–1112 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Bai, L. et al. Liver type 1 innate lymphoid cells develop locally via an interferon-gamma-dependent loop. Science. 371, 1–8 (2021).

  44. 44.

    Marcus, A. et al. Recognition of tumors by the innate immune system and natural killer cells. Adv. Immunol. 122, 91–128 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Malmberg, K. J. et al. Natural killer cell-mediated immunosurveillance of human cancer. Semin. Immunol. 31, 20–29 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Di Vito, C. et al. NK cells to cure cancer. Semin. Immunol. 41, 101272 (2019).

    PubMed  Google Scholar 

  47. 47.

    Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Cortez, V. S. et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-beta signaling. Nat. Immunol. 18, 995–1003 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Hawke, L. G. et al. TGF-beta and IL-15 synergize through MAPK pathways to drive the conversion of human NK cells to an innate lymphoid cell 1-like phenotype. J. Immunol. 204, 3171–3181 (2020).

    CAS  PubMed  Google Scholar 

  50. 50.

    Park, E. et al. Toxoplasma gondii infection drives conversion of NK cells into ILC1-like cells. Elife 8, 1–25 (2019).

  51. 51.

    Pikovskaya, O. et al. Cutting edge: eomesodermin is sufficient to direct type 1 innate lymphocyte development into the conventional NK lineage. J. Immunol. 196, 1449–1454 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Zhang, K. et al. Cutting edge: notch signaling promotes the plasticity of group-2 innate lymphoid cells. J. Immunol. 198, 1798–1803 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Flamar, A. L. et al. Interleukin-33 induces the enzyme tryptophan hydroxylase 1 to promote inflammatory group 2 innate lymphoid cell-mediated immunity. Immunity 52, 606–19 e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Chea, S. et al. Notch signaling in group 3 innate lymphoid cells modulates their plasticity. Sci. Signal. 9, ra45 (2016).

    PubMed  Google Scholar 

  55. 55.

    Rankin, L. C. et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 14, 389–395 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature 494, 261–265 (2013).

    CAS  PubMed  Google Scholar 

  57. 57.

    Qi, X. et al. Brg1 restrains the pro-inflammatory properties of ILC3s and modulates intestinal immunity. Mucosal Immunol. 14, 38–52 (2021).

  58. 58.

    Teunissen, M. B. M. et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J. Invest Dermatol. 134, 2351–2360 (2014).

    CAS  PubMed  Google Scholar 

  59. 59.

    Viant, C. et al. Transforming growth factor-beta and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Sci. Signal. 9, ra46 (2016).

    PubMed  Google Scholar 

  60. 60.

    Verrier, T. et al. Phenotypic and functional plasticity of murine intestinal NKp46+ group 3 innate lymphoid cells. J. Immunol. 196, 4731–4738 (2016).

    CAS  PubMed  Google Scholar 

  61. 61.

    Cortez, V. S. et al. Transforming growth factor-beta signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44, 1127–1139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Gasteiger, G. et al. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–100 e10 (2017).

    CAS  PubMed  Google Scholar 

  64. 64.

    Rao, A. et al. Cytokines regulate the antigen-presenting characteristics of human circulating and tissue-resident intestinal ILCs. Nat. Commun. 11, 2049 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Yang, J. et al. Selective programming of CCR10(+) innate lymphoid cells in skin-draining lymph nodes for cutaneous homeostatic regulation. Nat. Immunol. 17, 48–4 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    Dutton, E. E. et al. Peripheral lymph nodes contain migratory and resident innate lymphoid cell populations. Sci. Immunol. 4, 1–14 (2019).

  67. 67.

    Kim, M. H. et al. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Vivier, E. et al. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    CAS  PubMed  Google Scholar 

  69. 69.

    Campbell, J. J. et al. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J. Immunol. 166, 6477–6482 (2001).

    CAS  PubMed  Google Scholar 

  70. 70.

    Frey, M. et al. Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J. Immunol. 161, 400–408 (1998).

    CAS  PubMed  Google Scholar 

  71. 71.

    Lugthart, G. et al. Human lymphoid tissues harbor a distinct CD69+CXCR6+ NK cell population. J. Immunol. 197, 78–84 (2016).

    CAS  PubMed  Google Scholar 

  72. 72.

    Stegmann, K. A. et al. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver. Sci. Rep. 6, 26157 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Boning, M. A. L. et al. ADAP promotes degranulation and migration of NK cells primed during in vivo listeria monocytogenes infection in mice. Front. Immunol. 10, 3144 (2019).

    PubMed  Google Scholar 

  74. 74.

    Bajenoff, M. et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203, 619–631 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Mayol, K. et al. Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood 118, 4863–4871 (2011).

    CAS  PubMed  Google Scholar 

  76. 76.

    Walzer, T. et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol. 8, 1337–1344 (2007).

    CAS  PubMed  Google Scholar 

  77. 77.

    Morrison, B. E. et al. Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J. Clin. Invest. 112, 1862–1870 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Khan, I. A. et al. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection. PLoS Pathog. 2, e49 (2006).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Ajuebor, M. N. et al. CCR5 deficiency drives enhanced natural killer cell trafficking to and activation within the liver in murine T cell-mediated hepatitis. Am. J. Pathol. 170, 1975–1988 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Lavergne, E. et al. Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res. 63, 7468–7474 (2003).

    CAS  PubMed  Google Scholar 

  81. 81.

    Wendel, M. et al. Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res. 68, 8437–8445 (2008).

    CAS  PubMed  Google Scholar 

  82. 82.

    Bernardini, G. et al. CCL3 and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. Blood 111, 3626–3634 (2008).

    CAS  PubMed  Google Scholar 

  83. 83.

    Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    CAS  PubMed  Google Scholar 

  84. 84.

    Wald, O. et al. IFN-gamma acts on T cells to induce NK cell mobilization and accumulation in target organs. J. Immunol. 176, 4716–4729 (2006).

    CAS  PubMed  Google Scholar 

  85. 85.

    Schneider, C. et al. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity 50, 1425–38 e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Zeis, P. et al. In situ maturation and tissue adaptation of type 2 innate lymphoid cell progenitors. Immunity 53, 775–92 e9 (2020).

    CAS  PubMed  Google Scholar 

  87. 87.

    Ghaedi, M. et al. Single-cell analysis of RORalpha tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J. Exp. Med. 217, 1–19 (2020).

  88. 88.

    Ricardo-Gonzalez, R. R. et al. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. J. Exp. Med. 217, 1–12 (2020).

  89. 89.

    Stier, M. T. et al. IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow. J. Exp. Med. 215, 263–281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Karta, M. R. et al. beta2 integrins rather than beta1 integrins mediate Alternaria-induced group 2 innate lymphoid cell trafficking to the lung. J. Allergy Clin. Immunol. 141, 329–38 e12 (2018).

    CAS  PubMed  Google Scholar 

  91. 91.

    Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Salimi, M. et al. Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production. J. Immunol. 196, 45–54 (2016).

    CAS  PubMed  Google Scholar 

  93. 93.

    Oyesola, O. O. et al. The prostaglandin D2 receptor CRTH2 promotes IL-33-induced ILC2 accumulation in the lung. J. Immunol. 204, 1001–1011 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Ardain, A. et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature 570, 528–532 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Satoh-Takayama, N. et al. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells. Immunity 41, 776–788 (2014).

    CAS  PubMed  Google Scholar 

  96. 96.

    Willinger, T. Oxysterols in intestinal immunity and inflammation. J. Intern. Med. 285, 367–380 (2019).

    CAS  PubMed  Google Scholar 

  97. 97.

    Chu, C. et al. Anti-microbial functions of group 3 innate lymphoid cells in gut-associated lymphoid tissues are regulated by G-protein-coupled receptor 183. Cell Rep. 23, 3750–3758 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Emgard, J. et al. Oxysterol sensing through the receptor GPR183 promotes the lymphoid-tissue-inducing function of innate lymphoid cells and colonic inflammation. Immunity 48, 120–32 e8 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Mackley, E. C. et al. CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat. Commun. 6, 5862 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Pearson, C. et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. Elife 5, e10066 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Shikhagaie, M. M. et al. Neuropilin-1 is expressed on lymphoid tissue residing LTi-like group 3 innate lymphoid cells and associated with ectopic lymphoid aggregates. Cell Rep. 18, 1761–1773 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Li, J. et al. Aryl hydrocarbon receptor signaling involves in the human intestinal ILC3/ILC1 conversion in the inflamed terminal ileum of Crohn’s disease patients. Inflamm. Cell Signal. 3, 1–5 (2016).

  103. 103.

    Huot, N. et al. Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nat. Med. 23, 1277–1286 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Germain, R. N. & Huang, Y. ILC2s—resident lymphocytes pre-adapted to a specific tissue or migratory effectors that adapt to where they move? Curr. Opin. Immunol. 56, 76–81 (2019).

    CAS  PubMed  Google Scholar 

  105. 105.

    Kloverpris, H. N. et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity 44, 391–405 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Wang, X. et al. Innate lymphoid cell memory. Cell Mol. Immunol. 16, 423–429 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Cerwenka, A. & Lanier, L. L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 16, 112–123 (2016).

    CAS  PubMed  Google Scholar 

  108. 108.

    Liang, F. et al. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Sci. Transl. Med. 9, 1–10 (2017).

  109. 109.

    Vaccari, M. et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat. Med. 22, 762–770 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Programs of the Chinese Academy of Sciences (XDB29020000), the National Natural Science Foundation of China (81722023, 81922031), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (ZDBS-LY-SM025), the Beijing Natural Science Foundation (7212067), and the Youth Innovation Promotion Association of CAS to S.W.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuo Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shao, F., Yu, D., Xia, P. et al. Dynamic regulation of innate lymphoid cells in the mucosal immune system. Cell Mol Immunol 18, 1387–1394 (2021). https://doi.org/10.1038/s41423-021-00689-6

Download citation

Keywords

  • ILCs
  • transdifferentiation
  • translocation
  • dynamic regulation
  • mucosal immune system

Search

Quick links