Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Expanded natural killer cells augment the antimyeloma effect of daratumumab, bortezomib, and dexamethasone in a mouse model

Abstract

The use of natural killer (NK) cells is a promising and safe immunotherapeutic approach in the field of cancer immunotherapy. However, combination treatments are required to enhance the effector functions and therapeutic efficacy of NK cells. In this study, we investigated the potential of daratumumab (Dara), bortezomib, and dexamethasone (Dvd) to augment the antitumor effects of NK cells in a multiple myeloma (MM) xenograft mouse model. NK cells were expanded and activated using the K562-OX40 ligand and membrane-bound IL-18 and IL-21 in the presence of IL-2 and IL-15 from peripheral blood mononuclear cells from MM patients. A human MM xenograft model was established using human RPMI8226-RFP-FLuc cells in NOD/SCID IL-2Rγnull (NSG) mice. Tumor-bearing mice were divided into six treatment groups: no treatment, expanded NK cells (eNKs), Dara, Dara + eNKs, Dvd, and Dvd + eNKs. Dvd treatment strongly enhanced the cytotoxicity of eNKs by upregulating expression of NK cell activation ligands, downregulating expression of NK cell inhibitory ligands, and promoting antibody-dependent cellular cytotoxicity. The combination of eNKs with Dvd significantly prolonged mouse survival and reduced the tumor burden and serum M-protein level. Furthermore, Dvd pretreatment significantly increased eNK persistence and homing to MM sites. Our findings suggest that Dvd treatment potentiates the antimyeloma effects of NK cells expanded and activated ex vivo by modulating immune responses in MM-bearing mice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Roodman, G. D. Pathogenesis of myeloma bone disease. Leukemia 23, 435–441 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Rajkumar, S. V. & Kumar, S. Multiple myeloma: diagnosis and treatment. Mayo Clin. Proc. 91, 101–119 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Al-Hujaily E. M., Oldham R. A., Hari P., Medin J. A. Development of Novel Immunotherapies for Multiple Myeloma. Int. J. Mol. Sci. 17, 1506 https://doi.org/10.3390/ijms17091506 (2016).

  4. 4.

    Berahovich R., et al. CAR-T Cells Based on Novel BCMA Monoclonal Antibody Block Multiple Myeloma Cell Growth. Cancers (Basel). 10, 323 https://doi.org/10.3390/cancers10090323 (2018).

  5. 5.

    Leung, W. Infusions of allogeneic natural killer cells as cancer therapy. Clin. Cancer Res. 20, 3390–3400 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Garg, T. K. et al. Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica 97, 1348–1356 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Jung, I. H. et al. In Vivo Study of Natural Killer (NK) Cell Cytotoxicity Against Cholangiocarcinoma in a Nude Mouse Model. Vivo 32, 771–781. (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Pittari, G. et al. Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs. Front. Immunol. 8, 1444 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Mahaweni, N. M., Ehlers, F. A. I., Bos, G. M. J. & Wieten, L. Tuning Natural Killer Cell Anti-multiple Myeloma Reactivity by Targeting Inhibitory Signaling via KIR and NKG2A. Front. Immunol. 9, 2848 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Shi, J. et al. Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 111, 1309–1317 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Luna, J. I. et al. Bortezomib Augments Natural Killer Cell Targeting of Stem-Like Tumor Cells. Cancers (Basel) 11, 85 (2019). 11.

    CAS  Article  Google Scholar 

  12. 12.

    de Weers, M. et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol. (Baltim., Md: 1950) 186, 1840–1848 (2011).

    Article  CAS  Google Scholar 

  13. 13.

    Plesner, T. & Krejcik, J. Daratumumab for the Treatment of Multiple Myeloma. Front. Immunol. 9, 1228 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Nijhof, I. S. et al. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide. Haematologica 100, 263–268 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Hofmeister, C. C. & Lonial, S. How to Integrate Elotuzumab and Daratumumab Into Therapy for Multiple Myeloma. J. Clin. Oncol. 34, 4421–4430. (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell. Stem Cell. 23, 181–192 (2018). e5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Kim, K. W. et al. Combined NK Cell Therapy and Radiation Therapy Exhibit Long-Term Therapeutic and Antimetastatic Effects in a Human Triple Negative Breast Cancer Model. Int J. Radiat. Oncol. Biol. Phys. 108, 115–125. (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  18. 18.

    Miyazaki, O. et al. Antimyeloma activity of NK012, a micelle-forming macromolecular prodrug of SN-38, in an orthotopic model. Int J. Cancer 134, 218–223 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. 19.

    Gras Navarro A., et al. Pretreatment of Glioblastoma with Bortezomib Potentiates Natural Killer Cell Cytotoxicity through TRAIL/DR5 Mediated Apoptosis and Prolongs Animal Survival. Cancers. 11, 996 https://doi.org/10.3390/cancers11070996 (2019).

  20. 20.

    Wang, Y. et al. Fratricide of NK Cells in Daratumumab Therapy for Multiple Myeloma Overcome by Ex Vivo-Expanded Autologous NK Cells. Clin. Cancer Res. 24, 4006–4017. (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Wang, Q. M. et al. Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells. Cancer Immunol. Res. 6, 965–977. (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Chesi, M. et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood 120, 376–385 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Rezvani, K. & Rouce, R. H. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Front. Immunol. 6, 578 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Liu, E. et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 382, 545–553. (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Leivas, A. et al. Novel treatment strategy with autologous activated and expanded natural killer cells plus anti-myeloma drugs for multiple myeloma. Oncoimmunology 5, e1250051 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Shanker, A. et al. Bortezomib Improves Adoptive T-cell Therapy by Sensitizing Cancer Cells to FasL Cytotoxicity. Cancer Res. 75, 5260–5272 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Carlsten, M. et al. Bortezomib sensitizes multiple myeloma to NK cells via ER-stress-induced suppression of HLA-E and upregulation of DR5. Oncoimmunology 8, e1534664 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Kamiya, T., Seow, S. V., Wong, D., Robinson, M. & Campana, D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Investig. 129, 2094–2106. (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Niehrs, A. & Altfeld, M. Regulation of NK-Cell Function by HLA Class II. Front. Cell Infect. Microbiol. 10, 55 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Schreeder, D. M. et al. Cutting edge: FcR-like 6 is an MHC class II receptor. J. Immunol. (Baltim., Md: 1950) 185, 23–27 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Johnson, D. B. et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight 3, e120360 (2018).

    PubMed Central  Article  Google Scholar 

  32. 32.

    Verkleij C. P. M., et al. Preclinical Rationale for Targeting the PD-1/PD-L1 Axis in Combination with a CD38 Antibody in Multiple Myeloma and Other CD38-Positive Malignancies. Cancers. 12, 3713 https://doi.org/10.3390/cancers12123713 2020.

  33. 33.

    Ochoa, M. C. et al. Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocyte-deficient mice reconstituted with human NK cells. Oncoimmunology 8, 1599636 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Reina-Ortiz, C. et al. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncoimmunology 10, 1853314 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Granzin, M. et al. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation. Front. Immunol. 8, 458 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Zhang, Y. et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology 121, 258–265 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Fujisaki, H. et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 69, 4010–4017 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Denman, C. J. et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE 7, e30264 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Seo, H. et al. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat. Commun. 8, 15776 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Lim, D. P. et al. Effect of exposure to interleukin-21 at various time points on human natural killer cell culture. Cytotherapy 16, 1419–1430 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Imai, C., Iwamoto, S. & Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106, 376–383 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Senju, H. et al. Effect of IL-18 on the Expansion and Phenotype of Human Natural Killer Cells: application to Cancer Immunotherapy. Int J. Biol. Sci. 14, 331–340. (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Geller, M. A. et al. Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a mouse xenograft model. Cytotherapy 15, 1297–1306 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Oyer, J. L. et al. Natural killer cells stimulated with PM21 particles expand and biodistribute in vivo: clinical implications for cancer treatment. Cytotherapy 18, 653–663 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Imamura, M. et al. Autonomous growth and increased cytotoxicity of natural killer cells expressing membrane-bound interleukin-15. Blood 124, 1081–1088 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531. (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Ciurea, S. O. et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood 130, 1857–1868. (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Lee, S. C. et al. Phase I Trial of Expanded, Activated Autologous NK-cell Infusions with Trastuzumab in Patients with HER2-positive Cancers. Clin. Cancer Res. 26, 4494–4502. (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2018R1A2B6006200, 2018R1A5A2024181, and 2020R1A2C2010098).

Author information

Affiliations

Authors

Contributions

J.L.T., S.H.J., D.C., J.J.L. designed the study. J.L.T., M.C.V., T.H.C., M.T.T., and K.H.L. performed the experiments and interpreted the data. S.Y.A., M.K., G.Y.S., D.H.Y., J.S.A., and H.J.K. contributed intellectually to the study. J.L.T., S.Y.A., M.C.V., and T.H.C. wrote the paper. D.C. and J.J.L. supervised the study and wrote the paper.

Corresponding authors

Correspondence to Duck Cho or Je-Jung Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thangaraj, J.L., Ahn, SY., Jung, SH. et al. Expanded natural killer cells augment the antimyeloma effect of daratumumab, bortezomib, and dexamethasone in a mouse model. Cell Mol Immunol (2021). https://doi.org/10.1038/s41423-021-00686-9

Download citation

Keywords

  • Multiple myeloma
  • Natural killer cell
  • Chemotherapy

Search

Quick links