Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circular RNA circZbtb20 maintains ILC3 homeostasis and function via Alkbh5-dependent m6A demethylation of Nr4a1 mRNA

Abstract

Group 3 innate lymphoid cells (ILC3s) play critical roles in innate immunity and gut homeostasis. However, how ILC3 homeostasis is regulated remains elusive. Here, we identified a novel circular RNA, circZbtb20, that is highly expressed in ILC3s and required for their maintenance and function. CircZbtb20 deletion causes reduced ILC3 numbers, increasing susceptibility to C. rodentium infection. Mechanistically, circZbtb20 enhances the interaction of Alkbh5 with Nr4a1 mRNA, leading to ablation of the m6A modification of Nr4a1 mRNA to promote its stability. Nr4a1 initiates Notch2 signaling activation, which contributes to the maintenance of ILC3 homeostasis. Deletion of Alkbh5 or Nr4a1 also impairs ILC3 homeostasis and increases susceptibilities to bacterial infection. Thus, our findings reveal an important role of circular RNA in the regulation of innate lymphoid cell homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eberl, G., Colonna, M., Di Santo, J. P. & McKenzie, A. N. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vivier, E. et al. Innate lymphoid cells : 10 years on. Cell 174, 1054–1066 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Serafini, N., Vosshenrich, C. A. & Di Santo, J. P. Transcriptional regulation of innate lymphoid cell fate. Nat. Rev. Immunol. 15, 415–428 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Xia, P. et al. WASH maintains NKp46(+) ILC3 cells by promoting AHR expression. Nat. Commun. 8, 15685 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, B. et al. Long noncoding RNA lncKdm2b is required for ILC3 maintenance by initiation of Zfp292 expression. Nat. Immunol. 18, 499–508 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, L. L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 17, 205–211 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Xia, P. et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48, 688–701.e687 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Guarnerio, J. et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165, 289–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  PubMed  Google Scholar 

  13. Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e821 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246.e1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Shaked, I. et al. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nat. Immunol. 16, 1228–1234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mullican, S. E. et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat. Med. 13, 730–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, X. D. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525–529 (2019).

  18. Hanna, R. N. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C-monocytes. Nat. Immunol. 12, 778–785 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sekiya, T. et al. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat. Immunol. 14, 230–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Hanna, R. N. et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ. Res. 110, 416–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, B. et al. An inducible circular RNA circKcnt2 inhibits ILC3 activation to facilitate colitis resolution. Nat. Commun. 11, 4076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, X. et al. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol. Cell 67, 214–227.e217 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Errichelli, L. et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat. Commun. 8, 14741 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, P. et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3. Nat. Immunol. 20, 183–194 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, S. et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31, 591–606.e596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Xiao, Y. et al. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N(6)-methyladenosine modification. Angew. Chem. 57, 15995–16000 (2018).

    Article  CAS  Google Scholar 

  31. Frye, M., Harada, B. T., Behm, M. & He, C. RNA modifications modulate gene expression during development. Science 361, 1346–1349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  PubMed  Google Scholar 

  33. Zheng, G. Q. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, Q. et al. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat. Immunol. 16, 1044–1050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo, X. et al. Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota. Immunity 42, 731–743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Longman, R. S. et al. CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211, 1571–1583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Castellanos, J. G. et al. Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity 49, 1077–1089.e1075 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bauche, D. et al. LAG3(+) regulatory T cells restrain interleukin-23-producing CX3CR1(+) gut-resident macrophages during group 3 innate lymphoid cell-driven colitis. Immunity 49, 342–352.e345 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Li, Z. Y. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    Article  PubMed  Google Scholar 

  44. Li, Q. et al. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab. 30, 157–173.e157 (2019).

    Article  PubMed  Google Scholar 

  45. Liu, G. et al. Regulation of hepatic lipogenesis by the zinc finger protein Zbtb20. Nat. Commun. 8, 14824 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fahrner, T. J., Carroll, S. L. & Milbrandt, J. The Ngfi-B protein, an inducible member of the thyroid steroid-receptor family, is rapidly modified posttranslationally. Mol. Cell. Biol. 10, 6454–6459 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Seehus, C. R. et al. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat. Immunol. 16, 599–608 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rankin, L. C. et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 14, 389–395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mielke, L. A. et al. TCF-1 controls ILC2 and NKp46+RORgammat+ innate lymphocyte differentiation and protection in intestinal inflammation. J. Immunol. 191, 4383–4391 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, L. M. et al. Nr4a1 plays a crucial modulatory role in Th1/Th17 cell responses and CNS autoimmunity. Brain. Behav. Immun. 68, 44–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X. et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Molinie, B. et al. m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome. Nat. Methods 13, 692–698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng, Q., Hou, J., Zhou, Y., Li, Z. & Cao, X. The RNA helicase DDX46 inhibits innate immunity by entrapping m(6)A-demethylated antiviral transcripts in the nucleus. Nat. Immunol. 18, 1094–1103 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Winkler, R. et al. m(6)A modification controls the innate immune response to infection by targeting type I interferons. Nat. Immunol. 20, 173–182 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Li, H. B. et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548, 338–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu, X. et al. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci. Rep. 4, 6420 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, B. et al. IL-7Ralpha glutamylation and activation of transcription factor Sall3 promote group 3 ILC development. Nat. Commun. 8, 231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, B. et al. Yeats4 drives ILC lineage commitment via activation of Lmo4 transcription. J. Exp. Med. 216, 2653–2668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shu Meng, Dongdong Fan, Yan Teng, Junying Jia, and Xiang Shi for technical support. We also thank Jing Li (Cnkingbio Company, Ltd., Beijing, China) for technical support. This work was supported by the Ministry of Science and Technology of China (2020YFA0803501 and 2019YFA0508501), the National Natural Science Foundation of China (31930036, 81921003, 92042302, 31870883, 91940305, 31728006, 81772646, and 31871494), the Strategic Priority Research Programs of the Chinese Academy of Sciences (XDB19030203), the Beijing Natural Science Foundation (5192018), the Biological Resource Program of the Chinese Academy of Science (KFJ-BRP-017-04), and the Young Elite Scientist Sponsorship Program of CAST (2018QNRC001).

Author information

Authors and Affiliations

Authors

Contributions

B.L. and N.L. performed experiments; B.L. designed the project, analyzed the data, and wrote the paper; and X.Z. constructed genetic mouse strains. L.Y., B.Y., H.L., P.Z., and T.L. analyzed data; Y.T. initiated the study and analyzed data; and Z.F. initiated the study and organized, designed, and wrote the paper.

Corresponding authors

Correspondence to Benyu Liu, Yong Tian or Zusen Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Liu, N., Zhu, X. et al. Circular RNA circZbtb20 maintains ILC3 homeostasis and function via Alkbh5-dependent m6A demethylation of Nr4a1 mRNA. Cell Mol Immunol 18, 1412–1424 (2021). https://doi.org/10.1038/s41423-021-00680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-021-00680-1

Keywords

This article is cited by

Search

Quick links