Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases

Abstract

The gut microbiota has a critical role in the maintenance of immune homeostasis. Alterations in the intestinal microbiota and gut microbiota-derived metabolites have been recognized in many immune-related inflammatory disorders. These metabolites can be produced by gut microbiota from dietary components or by the host and can be modified by gut bacteria or synthesized de novo by gut bacteria. Gut microbiota-derived metabolites influence a plethora of immune cell responses, including T cells, B cells, dendritic cells, and macrophages. Some of these metabolites are involved in the pathogenesis of immune-related inflammatory diseases, such as inflammatory bowel diseases, diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Here, we review the role of microbiota-derived metabolites in regulating the functions of different immune cells and the pathogenesis of chronic immune-related inflammatory diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854.e1841 (2010).

    PubMed  Google Scholar 

  3. 3.

    Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  PubMed  Google Scholar 

  4. 4.

    Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008).

    CAS  PubMed  Google Scholar 

  5. 5.

    Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    CAS  PubMed  Google Scholar 

  7. 7.

    Luo, X. M. et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl. Environ. Microbiol. 84, e02288–17 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Hevia, A. et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio 5, e01548-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Shapiro, H., Thaiss, C. A., Levy, M. & Elinav, E. The cross talk between microbiota and the immune system: metabolites take center stage. Curr. Opin. Immunol. 30, 54–62 (2014).

    CAS  PubMed  Google Scholar 

  10. 10.

    Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kim, C. H. Immune regulation by microbiome metabolites. Immunology 154, 220–229 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Jiminez, J. A., Uwiera, T. C., Abbott, D. W., Uwiera, R. R. E. & Inglis, G. D. Butyrate supplementation at high concentrations alters enteric bacterial communities and reduces intestinal inflammation in mice infected with Citrobacter rodentium. mSphere 2, e00243-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Vernia, P. et al. Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment. Pharmacol. Therap. 9, 309–313 (1995).

    CAS  Google Scholar 

  14. 14.

    Gao, X. et al. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J. Biosci. Bioeng. 118, 476–481 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Biagioli, M. et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J. Immunol. 199, 718–733 (2017).

    CAS  PubMed  Google Scholar 

  16. 16.

    Gadaleta, R. M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).

    CAS  PubMed  Google Scholar 

  17. 17.

    Fernandez-Banares, F. et al. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Spanish Group for the Study of Crohn’s Disease and Ulcerative Colitis (GETECCU). Am. J. Gastroenterol. 94, 427–433 (1999).

    CAS  PubMed  Google Scholar 

  18. 18.

    Sun, M., Wu, W., Liu, Z. & Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 52, 1–8 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    Bilotta, A. J. & Cong, Y. Gut microbiota metabolite regulation of host defenses at mucosal surfaces: implication in precision medicine. Precis. Clin. Med. 2, 110–119 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Noverr, M. C. & Huffnagle, G. B. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 12, 562–568 (2004).

    CAS  PubMed  Google Scholar 

  21. 21.

    Bauer, H., Horowitz, R. E., Levenson, S. M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am. J. Pathol. 42, 471–483 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Cebra, J. J. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69, 1046S–1051S (1999).

    CAS  PubMed  Google Scholar 

  23. 23.

    Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    CAS  PubMed  Google Scholar 

  24. 24.

    Ohwaki, M., Yasutake, N., Yasui, H. & Ogura, R. A comparative study on the humoral immune responses in germ-free and conventional mice. Immunology 32, 43–48 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Macpherson, A. J., McCoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    CAS  PubMed  Google Scholar 

  26. 26.

    Mestecky, J., Russell, M. W. & Elson, C. O. Perspectives on mucosal vaccines: is mucosal tolerance a barrier? J. Immunol. 179, 5633–5638 (2007).

    CAS  PubMed  Google Scholar 

  27. 27.

    Benveniste, J., Lespinats, G. & Salomon, J. Serum and secretory IgA in axenic and holoxenic mice. J. Immunol. 107, 1656–1662 (1971).

    CAS  PubMed  Google Scholar 

  28. 28.

    Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004).

    CAS  PubMed  Google Scholar 

  29. 29.

    Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  PubMed  Google Scholar 

  31. 31.

    Omenetti, S. et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51, 77–89.e76 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Salzman, N. H. Microbiota-immune system interaction: an uneasy alliance. Curr. Opin. Microbiol. 14, 99–105 (2011).

    PubMed  Google Scholar 

  33. 33.

    Fernandes, J., Su, W., Rahat-Rozenbloom, S., Wolever, T. M. & Comelli, E. M. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4, e121 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim. Biophys. Acta 1784, 1873–1898 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS  PubMed  Google Scholar 

  37. 37.

    Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Louis, P., Young, P., Holtrop, G. & Flint, H. J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314 (2010).

    CAS  PubMed  Google Scholar 

  39. 39.

    Sivaprakasam, S., Bhutia, Y. D., Yang, S. & Ganapathy, V. Short-chain fatty acid transporters: role in colonic homeostasis. Compr. Physiol. 8, 299–314 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Davie, J. R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133, 2485S–2493S (2003).

    CAS  PubMed  Google Scholar 

  41. 41.

    Thangaraju, M. et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69, 2826–2832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Yang, W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11, 4457 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sun, M. et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9, 3555 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Smith, T. A modification of the method for determining the production of indol by bacteria. J. Exp. Med. 2, 543–547 (1897).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Hickman, F. W., Steigerwalt, A. G., Farmer, J. J. 3rd & Brenner, D. J. Identification of Proteus penneri sp. nov., formerly known as Proteus vulgaris indole negative or as Proteus vulgaris biogroup 1. J. Clin. Microbiol. 15, 1097–1102 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Lee, J. H. & Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34, 426–444 (2010).

    CAS  PubMed  Google Scholar 

  48. 48.

    Williams, B. B. et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16, 495–503 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Wlodarska, M. et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe 22, 25–37 e26 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41, 296–310 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hubbard, T. D. et al. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 5, 12689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    CAS  PubMed  Google Scholar 

  54. 54.

    Zeisel, S. H. & Warrier, M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu. Rev. Nutr. 37, 157–181 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl Acad. Sci. USA 109, 21307–21312 (2012).

    CAS  PubMed  Google Scholar 

  56. 56.

    Zhu, Y. et al. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl Acad. Sci. USA 111, 4268–4273 (2014).

    CAS  PubMed  Google Scholar 

  57. 57.

    Koeth, R. A. et al. gamma-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 20, 799–812 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wallrabenstein, I. et al. Human trace amine-associated receptor TAAR5 can be activated by trimethylamine. PLoS ONE 8, e54950 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Chen, S. et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab. 30, 1141–1151.e1145 (2019).

    CAS  PubMed  Google Scholar 

  61. 61.

    Long, S. L., Gahan, C. G. M. & Joyce, S. A. Interactions between gut bacteria and bile in health and disease. Mol. Asp. Med. 56, 54–65 (2017).

    CAS  Google Scholar 

  62. 62.

    Hofmann, A. F. Biliary secretion and excretion in health and disease: current concepts. Ann. Hepatol. 6, 15–27 (2007).

    CAS  PubMed  Google Scholar 

  63. 63.

    Stellwag, E. J. & Hylemon, P. B. 7alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by Clostridium leptum. J. lipid Res. 20, 325–333 (1979).

    CAS  PubMed  Google Scholar 

  64. 64.

    Gerard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3, 14–24 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Forman, B. M. et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81, 687–693 (1995).

    CAS  PubMed  Google Scholar 

  66. 66.

    Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. cell 3, 543–553 (1999).

    CAS  PubMed  Google Scholar 

  67. 67.

    Bertilsson, G. et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl Acad. Sci. USA 95, 12208–12213 (1998).

    CAS  PubMed  Google Scholar 

  68. 68.

    Xie, W. et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl Acad. Sci. USA 98, 3375–3380 (2001).

    CAS  PubMed  Google Scholar 

  69. 69.

    Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

    CAS  PubMed  Google Scholar 

  70. 70.

    Zhang, J., Huang, W., Qatanani, M., Evans, R. M. & Moore, D. D. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J. Biol. Chem. 279, 49517–49522 (2004).

    CAS  PubMed  Google Scholar 

  71. 71.

    Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    CAS  PubMed  Google Scholar 

  72. 72.

    Harper, A. E., Miller, R. H. & Block, K. P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 4, 409–454 (1984).

    CAS  PubMed  Google Scholar 

  73. 73.

    Amorim Franco, T. M. & Blanchard, J. S. Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drugability. Biochemistry 56, 5849–5865 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Ikeda, K. et al. Slc3a2 mediates branched-chain amino-acid-dependent maintenance of regulatory T cells. Cell Rep. 21, 1824–1838 (2017).

    CAS  PubMed  Google Scholar 

  75. 75.

    Sanchez-Jimenez, F., Medina, M. A., Villalobos-Rueda, L. & Urdiales, J. L. Polyamines in mammalian pathophysiology. Cell. Mol. life Sci. 76, 3987–4008 (2019).

    CAS  PubMed  Google Scholar 

  76. 76.

    Di Martino, M. L. et al. Polyamines: emerging players in bacteria-host interactions. Int. J. Med. Microbiol. 303, 484–491 (2013).

    PubMed  Google Scholar 

  77. 77.

    Milovic, V. Polyamines in the gut lumen: bioavailability and biodistribution. Eur. J. Gastroenterol. Hepatol. 13, 1021–1025 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Matsumoto, M. & Benno, Y. The relationship between microbiota and polyamine concentration in the human intestine: a pilot study. Microbiol. Immunol. 51, 25–35 (2007).

    CAS  PubMed  Google Scholar 

  79. 79.

    Noack, J., Dongowski, G., Hartmann, L. & Blaut, M. The human gut bacteria Bacteroides thetaiotaomicron and Fusobacterium varium produce putrescine and spermidine in cecum of pectin-fed gnotobiotic rats. J. Nutr. 130, 1225–1231 (2000).

    CAS  PubMed  Google Scholar 

  80. 80.

    Noack, J., Kleessen, B., Proll, J., Dongowski, G. & Blaut, M. Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. J. Nutr. 128, 1385–1391 (1998).

    CAS  PubMed  Google Scholar 

  81. 81.

    Zhang, L. et al. Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Proc. Natl Acad. Sci. USA 91, 10883–10887 (1994).

    CAS  PubMed  Google Scholar 

  82. 82.

    Hofer, A. M. & Brown, E. M. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 4, 530–538 (2003).

    CAS  PubMed  Google Scholar 

  83. 83.

    Said, H. M. Intestinal absorption of water-soluble vitamins in health and disease. Biochem. J. 437, 357–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Magnusdottir, S., Ravcheev, D., de Crecy-Lagard, V. & Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 6, 148 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Hill, M. J. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev. 6, S43–S45 (1997).

    PubMed  Google Scholar 

  86. 86.

    Morishita, T., Tamura, N., Makino, T. & Kudo, S. Production of menaquinones by lactic acid bacteria. J. Dairy Sci. 82, 1897–1903 (1999).

    CAS  PubMed  Google Scholar 

  87. 87.

    Ramotar, K., Conly, J. M., Chubb, H. & Louie, T. J. Production of menaquinones by intestinal anaerobes. J. Infect. Dis. 150, 213–218 (1984).

    CAS  PubMed  Google Scholar 

  88. 88.

    Chang, Y. L. et al. A screen of Crohn’s disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol. 12, 457–467 (2019).

    CAS  PubMed  Google Scholar 

  89. 89.

    Heinonen, K. M. & Perreault, C. Development and functional properties of thymic and extrathymic T lymphocytes. Crit. Rev. Immunol. 28, 441–466 (2008).

    CAS  PubMed  Google Scholar 

  90. 90.

    Wan, Y. Y. Multi-tasking of helper T cells. Immunology 130, 166–171 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Rossjohn, J., Pellicci, D. G., Patel, O., Gapin, L. & Godfrey, D. I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12, 845–857 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Koay, H. F., Godfrey, D. I. & Pellicci, D. G. Development of mucosal-associated invariant T cells. Immunol. cell Biol. 96, 598–606 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  94. 94.

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  PubMed  Google Scholar 

  95. 95.

    Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    CAS  PubMed  Google Scholar 

  97. 97.

    Kespohl, M. et al. The microbial metabolite butyrate induces expression of Th1-associated factors in CD4(+) T cells. Front. Immunol. 8, 1036 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Pols, T. W. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14, 747–757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Hang, S. et al. Author Correction: Bile acid metabolites control TH17 and Treg cell differentiation. Nature 579, E7 (2020).

    CAS  PubMed  Google Scholar 

  100. 100.

    Song, X. et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    CAS  PubMed  Google Scholar 

  101. 101.

    Wheeler, M. A., Rothhammer, V. & Quintana, F. J. Control of immune-mediated pathology via the aryl hydrocarbon receptor. J. Biol. Chem. 292, 12383–12389 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Singh, N. P. et al. Dietary indoles suppress delayed-type hypersensitivity by inducing a switch from proinflammatory Th17 cells to anti-inflammatory regulatory T cells through regulation of microRNA. J. Immunol. 196, 1108–1122 (2016).

    CAS  PubMed  Google Scholar 

  103. 103.

    Rouse, M., Singh, N. P., Nagarkatti, P. S. & Nagarkatti, M. Indoles mitigate the development of experimental autoimmune encephalomyelitis by induction of reciprocal differentiation of regulatory T cells and Th17 cells. Br. J. Pharmacol. 169, 1305–1321 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Chen, L. et al. Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflamm. Bowel Dis. 25, 1450–1461 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Vieira, R. S. et al. Butyrate attenuates lung inflammation by negatively modulating Th9 cells. Front. Immunol. 10, 67 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Hasko, G. et al. Spermine differentially regulates the production of interleukin-12 p40 and interleukin-10 and suppresses the release of the T helper 1 cytokine interferon-gamma. Shock 14, 144–149 (2000).

    CAS  PubMed  Google Scholar 

  108. 108.

    Jankovic, D., Kugler, D. G. & Sher, A. IL-10 production by CD4+ effector T cells: a mechanism for self-regulation. Mucosal Immunol. 3, 239–246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Balmer, M. L. et al. Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016).

    CAS  PubMed  Google Scholar 

  111. 111.

    Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8(+) T cells. Immunity 51, 285–297 e285 (2019).

    CAS  PubMed  Google Scholar 

  112. 112.

    Trompette, A. et al. Dietary fiber confers protection against flu by shaping Ly6c(−) patrolling monocyte hematopoiesis and CD8(+) T cell metabolism. Immunity 48, 992–1005 e1008 (2018).

    CAS  PubMed  Google Scholar 

  113. 113.

    Luu, M. et al. Regulation of the effector function of CD8(+) T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8, 14430 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    PubMed  Google Scholar 

  116. 116.

    Gold, M. C. et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 8, e1000407 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Corbett, A. J. et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014).

    CAS  PubMed  Google Scholar 

  118. 118.

    Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    CAS  PubMed  Google Scholar 

  119. 119.

    Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells. Science 357, 806–810 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Jellusova, J. Metabolic control of B cell immune responses. Curr. Opin. Immunol. 63, 21–28 (2020).

    CAS  PubMed  Google Scholar 

  121. 121.

    Blair, D., Dufort, F. J. & Chiles, T. C. Protein kinase Cβ is critical for the metabolic switch to glycolysis following B-cell antigen receptor engagement. Biochem. J. 448, 165–169 (2012).

    CAS  PubMed  Google Scholar 

  122. 122.

    Kim, M., Qie, Y., Park, J. & Kim Chang, H. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20, 202–214 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Sanchez, H. N. et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat. Commun. 11, 60 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Lycke, N. Y. & Bemark, M. The role of Peyer’s patches in synchronizing gut IgA responses. Front. Immunol. 3, 329 (2012).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Reboldi, A. et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352, aaf4822 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Tan, J. et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15, 2809–2824 (2016).

    CAS  PubMed  Google Scholar 

  127. 127.

    Feng, T., Cong, Y., Qin, H., Benveniste, E. N. & Elson, C. O. Generation of mucosal dendritic cells from bone marrow reveals a critical role of retinoic acid. J. Immunol. 185, 5915–5925 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    CAS  PubMed  Google Scholar 

  129. 129.

    Wu, W. et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 10, 946–956 (2017).

    CAS  PubMed  Google Scholar 

  130. 130.

    Yang, W. et al. Microbiota metabolite short-chain fatty acids facilitate mucosal adjuvant activity of cholera toxin through GPR43. J. Immunol. 203, 282–292 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Laidlaw, B. J. et al. Interleukin-10 from CD4+ follicular regulatory T cells promotes the germinal center response. Sci. Immunol. 2, eaan4767 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Itoh, K. & Hirohata, S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J. Immunol. 154, 4341–4350 (1995).

    CAS  PubMed  Google Scholar 

  133. 133.

    Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    CAS  PubMed  Google Scholar 

  134. 134.

    Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    CAS  PubMed  Google Scholar 

  136. 136.

    Li, J. et al. Aryl hydrocarbon receptor activation suppresses EBF1 and PAX5 and impairs human B lymphopoiesis. J. Immunol. 199, 3504–3515 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Vaidyanathan, B. et al. The aryl hydrocarbon receptor controls cell-fate decisions in B cells. J. Exp. Med. 214, 197–208 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Piper, C. J. M. et al. Aryl hydrocarbon receptor contributes to the transcriptional program of IL-10-producing regulatory B cells. Cell Rep. 29, 1878–1892.e1877 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Rosser, E. C. et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab. 31, 837–851 e810 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Singh, N. et al. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J. Biol. Chem. 285, 27601–27608 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Berndt, B. E. et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1384–G1392 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Andrade-Oliveira, V. et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 26, 1877–1888 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Liu, L. et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell. Immunol. 277, 66–73 (2012).

    CAS  PubMed  Google Scholar 

  144. 144.

    Nastasi, C. et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 5, 16148 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Gurav, A., Sivaprakasam, S., Bhutia, Y. D., Boettger, T. & Singh, N. Ganapathy V. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochem. J. 469, 267–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    CAS  PubMed  Google Scholar 

  147. 147.

    Ichikawa, R. et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology 136, 153–162 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Sugawara, A. et al. Polyamine compound deoxyspergualin inhibits heat shock protein-induced activation of immature dendritic cells. Cell Stress Chaperones 14, 133–139 (2009).

    CAS  PubMed  Google Scholar 

  149. 149.

    Gervais, A. et al. Dendritic cells are defective in breast cancer patients: a potential role for polyamine in this immunodeficiency. Breast Cancer Res. 7, R326–R335 (2005).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Liu, T. et al. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-kappaB pathway in RAW264.7 cells. Inflammation 35, 1676–1684 (2012).

    CAS  PubMed  Google Scholar 

  151. 151.

    Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e437 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Ljubuncic, P., Fuhrman, B., Oiknine, J., Aviram, M. & Bomzon, A. Effect of deoxycholic acid and ursodeoxycholic acid on lipid peroxidation in cultured macrophages. Gut 39, 475–478 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Haselow, K. et al. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J. Leukoc. Biol. 94, 1253–1264 (2013).

    PubMed  Google Scholar 

  154. 154.

    Wu, K. et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood 136, 501–515 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Lee, J. H. et al. Anti-inflammatory and anti-genotoxic activity of branched chain amino acids (BCAA) in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages. Food Sci. Biotechnol. 26, 1371–1377 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Bjerrum, J. T. et al. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 11, 122–133 (2015).

    CAS  PubMed  Google Scholar 

  157. 157.

    Marchesi, J. R. et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res. 6, 546–551 (2007).

    CAS  PubMed  Google Scholar 

  158. 158.

    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

    CAS  PubMed  Google Scholar 

  160. 160.

    Le Gall, G. et al. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J. Proteome Res. 10, 4208–4218 (2011).

    PubMed  Google Scholar 

  161. 161.

    Nikolaus, S. et al. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology 153, 1504–1516 e1502 (2017).

    CAS  PubMed  Google Scholar 

  162. 162.

    Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Agus, A. et al. Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-invasive E. coli infection and intestinal inflammation. Sci. Rep. 6, 19032 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Patz, J., Jacobsohn, W. Z., Gottschalk-Sabag, S., Zeides, S. & Braverman, D. Z. Treatment of refractory distal ulcerative colitis with short chain fatty acid enemas. Am. J. Gastroenterol. 91, 731–734 (1996).

    CAS  PubMed  Google Scholar 

  165. 165.

    Breuer, R. I. et al. Rectal irrigation with short-chain fatty acids for distal ulcerative colitis. Preliminary report. Digestive Dis. Sci. 36, 185–187 (1991).

    CAS  Google Scholar 

  166. 166.

    Steinhart, A. H., Hiruki, T., Brzezinski, A. & Baker, J. P. Treatment of left-sided ulcerative colitis with butyrate enemas: a controlled trial. Aliment. Pharmacol. Therap. 10, 729–736 (1996).

    CAS  Google Scholar 

  167. 167.

    Breuer, R. I. et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial. Gut 40, 485–491 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Alexeev, E. E. et al. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am. J. Pathol. 188, 1183–1194 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Monteleone, I. et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141, 237–248 (2011). 248 e231.

    CAS  PubMed  Google Scholar 

  171. 171.

    Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    CAS  PubMed  Google Scholar 

  172. 172.

    Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009).

    CAS  PubMed  Google Scholar 

  173. 173.

    Velmurugan, G., Ramprasath, T., Gilles, M., Swaminathan, K. & Ramasamy, S. Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends Endocrinol. Metab. 28, 612–625 (2017).

    CAS  PubMed  Google Scholar 

  174. 174.

    Boerner, B. P. & Sarvetnick, N. E. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann. N. Y. Acad. Sci. 1243, 103–118 (2011).

    CAS  PubMed  Google Scholar 

  175. 175.

    Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    CAS  PubMed  Google Scholar 

  176. 176.

    Marino, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    CAS  PubMed  Google Scholar 

  177. 177.

    De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    PubMed  Google Scholar 

  178. 178.

    Lin, H. V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7, e35240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Kimura, I. et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829 (2013).

    PubMed  PubMed Central  Google Scholar 

  181. 181.

    Dambrova, M. et al. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp. Clin. Endocrinol. Diabetes 124, 251–256 (2016).

    CAS  PubMed  Google Scholar 

  182. 182.

    Schugar, R. C. et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep. 19, 2451–2461 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Shan, Z. et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am. J. Clin. Nutr. 106, 888–894 (2017).

    CAS  PubMed  Google Scholar 

  184. 184.

    Tang, W. H. et al. Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin. Chem. 63, 297–306 (2017).

    CAS  PubMed  Google Scholar 

  185. 185.

    Felig, P., Wahren, J., Sherwin, R. & Palaiologos, G. Amino acid and protein metabolism in diabetes mellitus. Arch. Intern. Med. 137, 507–513 (1977).

    CAS  PubMed  Google Scholar 

  186. 186.

    Nakamura, H. et al. Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients. Nutr. Diabetes 4, e133 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Batch, B. C. et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metab. Clin. Exp. 62, 961–969 (2013).

    CAS  PubMed  Google Scholar 

  188. 188.

    Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Xiao, F. et al. Effects of individual branched-chain amino acids deprivation on insulin sensitivity and glucose metabolism in mice. Metab. Clin. Exp. 63, 841–850 (2014).

    CAS  PubMed  Google Scholar 

  190. 190.

    Tuomainen, M. et al. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr. Diabetes 8, 35 (2018).

    PubMed  PubMed Central  Google Scholar 

  191. 191.

    Deane, K. D. et al. Genetic and environmental risk factors for rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 31, 3–18 (2017).

    PubMed  PubMed Central  Google Scholar 

  192. 192.

    Wang, Q. & Xu, R. Data-driven multiple-level analysis of gut-microbiome-immune-joint interactions in rheumatoid arthritis. BMC Genomics 20, 124 (2019).

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Mizuno, M., Noto, D., Kaga, N., Chiba, A. & Miyake, S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS ONE 12, e0173032 (2017).

    PubMed  PubMed Central  Google Scholar 

  194. 194.

    Saouaf, S. J. et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp. Mol. Pathol. 87, 99–104 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Bruusgaard, A. & Andersen, R. B. Abnormal bile acid metabolism in rheumatoid arthritis. Preliminary communication. Dan. Med. Bull. 23, 95–98 (1976).

    CAS  PubMed  Google Scholar 

  196. 196.

    Li, Z. Y., Zhou, J. J., Luo, C. L. & Zhang, L. M. Activation of TGR5 alleviates inflammation in rheumatoid arthritis peripheral blood mononuclear cells and in mice with collagen IIinduced arthritis. Mol. Med. Rep. 20, 4540–4550 (2019).

    PubMed  PubMed Central  Google Scholar 

  197. 197.

    Hasan, H., Ismail, H., El-Orfali, Y. & Khawaja, G. Therapeutic benefits of Indole-3-Carbinol in adjuvant-induced arthritis and its protective effect against methotrexate induced-hepatic toxicity. BMC Complem. Alternat. Med. 18, 337 (2018).

    CAS  Google Scholar 

  198. 198.

    Mu, Q. et al. Control of lupus nephritis by changes of gut microbiota. Microbiome 5, 73 (2017).

    PubMed  PubMed Central  Google Scholar 

  199. 199.

    Zegarra-Ruiz, D. F. et al. A diet-sensitive commensal Lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host microbe 25, 113–127.e116 (2019).

    CAS  PubMed  Google Scholar 

  200. 200.

    Rodriguez-Carrio, J. et al. Intestinal dysbiosis is associated with altered short-chain fatty acids and serum-free fatty acids in systemic lupus erythematosus. Front. Immunol. 8, 23 (2017).

    PubMed  PubMed Central  Google Scholar 

  201. 201.

    Kim, H. A. et al. Polyamine patterns in plasma of patients with systemic lupus erythematosus and fever. Lupus 27, 930–938 (2018).

    CAS  PubMed  Google Scholar 

  202. 202.

    Gunnia, U. B., Amenta, P. S., Seibold, J. R. & Thomas, T. J. Successful treatment of lupus nephritis in MRL-lpr/lpr mice by inhibiting ornithine decarboxylase. Kidney Int. 39, 882–890 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DK105585, DK112436, DK125011, AI150210, and DK124132; the University of Texas System STARs award (Y.C.); and supported by the James W. McLaughlin Fellowship Fund, UTMB (W.Y.). We appreciate Dr. Sherry Haller of The University of Texas Medical Branch for proofreading the manuscript. All images were created with BioRender.com.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yingzi Cong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol 18, 866–877 (2021). https://doi.org/10.1038/s41423-021-00661-4

Download citation

Keywords

  • gut microbiota
  • metabolites
  • T cells
  • B cells
  • autoimmune diseases

Search

Quick links