Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment

Subjects

Abstract

Chimeric antigen receptor (CAR)-T cell therapy has achieved successful outcomes against hematological malignancies and provided a new impetus for treating solid tumors. However, the efficacy of CAR-T cells for solid tumors remains unsatisfactory. The tumor microenvironment has an important role in interfering with and inhibiting the effector function of immune cells, among which upregulated inhibitory checkpoint receptors, soluble suppressive cytokines, altered chemokine expression profiles, aberrant vasculature, complicated stromal composition, hypoxia and abnormal tumor metabolism are major immunosuppressive mechanisms. In this review, we summarize the inhibitory factors that affect the function of CAR-T cells in tumor microenvironment and discuss approaches to improve CAR-T cell efficacy for solid tumor treatment by targeting those barriers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra138 (2013).

    Google Scholar 

  2. 2.

    Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS  Google Scholar 

  3. 3.

    Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Prasad, V. Immunotherapy: Tisagenlecleucel - the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol. 15, 11–12 (2018).

    PubMed  Google Scholar 

  6. 6.

    Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Schaft, N. The landscape of CAR-T cell clinical trials against solid tumors-a comprehensive overview. Cancers 12, 2567 (2020).

  8. 8.

    Xianbao Zhan, B. W. et al. Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J. Clin. Oncol. 37, 1 (2019).

    Google Scholar 

  9. 9.

    Beatty, G. L. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155, 29–32 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Beatty, G. L. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol. Res. 2, 112–120 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Shi, D. et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials. Clin. Cancer Res. 26, 3979–3989 (2020).

    CAS  PubMed  Google Scholar 

  13. 13.

    Hegde, M. et al. Expansion of HER2-CAR T cells after lymphodepletion and clinical responses in patients with advanced sarcoma. J. Clin. Oncol. 35, 10508 (2017).

  14. 14.

    Ahmed, N. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma A phase 1 dose-escalation trial. JAMA Oncol. 3, 1094–1101 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-Positive sarcoma. J. Clin. Oncol. 33, 1688 (2015) .

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Heczey, A. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

  18. 18.

    Thistlethwaite, F. C. et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol. Immunother. 66, 1425–1436 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Thistlethwaite, F. C. et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol. Immunother. 66, 1425–1436 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zhang, C. et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA(+) metastatic colorectal cancers. Mol. Ther. 25, 1248–1258 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Katz, S. C. et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA(+) liver metastases. Clin. Cancer Res. 21, 3149–3159 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Junghans, R. P. et al. Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 76, 1257–1270 (2016).

    CAS  PubMed  Google Scholar 

  23. 23.

    Fousek, K. & Ahmed, N. The evolution of T-cell therapies for solid malignancies. Clin. Cancer Res. 21, 3384–3392 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Slaney, C. Y., Kershaw, M. H. & Darcy, P. K. Trafficking of T cells into tumors. Cancer Res. 74, 7168–7174 (2014).

    CAS  PubMed  Google Scholar 

  25. 25.

    Korman, A. J., Peggs, K. S. & Allison, J. P. Checkpoint blockade in cancer immunotherapy. Adv. Immunol. 90, 297–339 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ugel, S. et al. Therapeutic targeting of myeloid-derived suppressor cells. Curr. Opin. Pharm. 9, 470–481 (2009).

    CAS  Google Scholar 

  27. 27.

    Tanaka, A. & Sakaguchi, S. Targeting Treg cells in cancer immunotherapy. Eur. J. Immunol. 49, 1140–1146 (2019).

    CAS  PubMed  Google Scholar 

  28. 28.

    Beckermann, K. E., Dudzinski, S. O. & Rathmell, J. C. Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor Rev. 35, 7–14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Counihan, J. L., Grossman, E. A. & Nomura, D. K. Cancer metabolism: current understanding and therapies. Chem. Rev. 118, 6893–6923 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell Biol. 25, 9543–9553 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    CAS  PubMed  Google Scholar 

  33. 33.

    Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Park, J. J. et al. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 116, 1291–1298 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Blank, C. U. & Enk, A. Therapeutic use of anti-CTLA-4 antibodies. Int. Immunol. 27, 3–10 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636–5646 (2013).

    CAS  PubMed  Google Scholar 

  37. 37.

    Moon, E. K. et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res. 20, 4262–4273 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gargett, T. et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol. Ther. 24, 1135–1149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest 126, 3130–3144 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Burga, R. A. et al. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol. Immunother. 64, 817–829 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Tanoue, K. et al. Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res. 77, 2040–2051 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chong, E. A. et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129, 1039–1041 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Suarez, E. R. et al. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 7, 34341–34355 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Li, S. et al. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin. Cancer Res. 23, 6982–6992 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36, 847–856 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Liu, X. et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76, 1578–1590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Dozier, J., Chen, N., Saini, J., Chintala, N. & Adusumilli, P. MA11.01 comparative efficacy of T-cell intrinsic versus extrinsic PD-1 blockade to overcome PD-L1+ tumor-mediated exhaustion. J. Thorac. Oncol. 13, S392 (2018).

    Google Scholar 

  48. 48.

    Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Hu, W. et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol. Immunother. 68, 365–377 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Gautron, A. S. et al. Fine and predictable tuning of TALEN gene editing targeting for improved T cell adoptive immunotherapy. Mol. Ther. Nucleic Acids 9, 312–321 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    CAS  PubMed  Google Scholar 

  52. 52.

    Ren, J. & Zhao, Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 8, 634–643 (2017).

  53. 53.

    Grosser, R., Cherkassky, L., Chintala, N. & Adusumilli, P. S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36, 471–482 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Schildberg, F. A., Klein, S. R., Freeman, G. J. & Sharpe, A. H. Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity 44, 955–972 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Lee, Y. H. et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 27, 1034–1045 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Hughes, C. E. & Nibbs, R. J. B. A guide to chemokines and their receptors. FEBS J. 285, 2944–2971 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    CAS  PubMed  Google Scholar 

  58. 58.

    Yanagie, H., Hisa, T., Ono, M. & Eriguchi, M. Chemokine and chemokine receptor related to cancer metastasis. Gan Kagaku Ryoho 37, 2052–2057 (2010).

    CAS  Google Scholar 

  59. 59.

    Lee, H. J., Song, I. C., Yun, H. J., Jo, D. Y. & Kim, S. CXC chemokines and chemokine receptors in gastric cancer: from basic findings towards therapeutic targeting. World J. Gastroenterol. 20, 1681–1693 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Dimberg, A. Chemokines in angiogenesis. Curr. Top. Microbiol. Immunol. 341, 59–80 (2010).

    CAS  PubMed  Google Scholar 

  61. 61.

    Keeley, E. C., Mehrad, B. & Strieter, R. M. Chemokines as mediators of tumor angiogenesis and neovascularization. Exp. Cell Res. 317, 685–690 (2011).

    CAS  PubMed  Google Scholar 

  62. 62.

    Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. & Swartz, M. A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    CAS  PubMed  Google Scholar 

  63. 63.

    Pivarcsi, A. et al. Tumor immune escape by the loss of homeostatic chemokine expression. Proc. Natl Acad. Sci. USA 104, 19055–19060 (2007).

    CAS  PubMed  Google Scholar 

  64. 64.

    Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475, 226–230 (2011).

    CAS  PubMed  Google Scholar 

  65. 65.

    Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Nagarsheth, N. et al. PRC2 epigenetically silences Th1-Type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res. 76, 275–282 (2016).

    CAS  PubMed  Google Scholar 

  67. 67.

    Wang, L. et al. Decitabine enhances lymphocyte migration and function and synergizes with CTLA-4 blockade in a murine ovarian cancer model. Cancer Immunol. Res. 3, 1030–1041 (2015).

    CAS  PubMed  Google Scholar 

  68. 68.

    Zou, W. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat. Med. 7, 1339–1346 (2001).

    CAS  PubMed  Google Scholar 

  69. 69.

    Kryczek, I. et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 65, 465–472 (2005).

    CAS  PubMed  Google Scholar 

  70. 70.

    Bertolini, F. et al. CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Res. 62, 3106–3112 (2002).

    CAS  PubMed  Google Scholar 

  71. 71.

    Rubin, J. B. et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl Acad. Sci. USA 100, 13513–13518 (2003).

    CAS  PubMed  Google Scholar 

  72. 72.

    Liang, Z. et al. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res. 65, 967–971 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    O’Hara, M. H. et al. Safety and pharmacokinetics of CXCR4 peptide antagonist, LY2510924, in combination with durvalumab in advanced refractory solid tumors. J. Pancreat. Cancer 6, 21–31 (2020).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Bonapace, L. et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515, 130–133 (2014).

    CAS  PubMed  Google Scholar 

  76. 76.

    Kitamura, T. et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J. Exp. Med. 212, 1043–1059 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Long, H. et al. Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-kappaB-mediated MMP-9 upregulation. Stem Cells 30, 2309–2319 (2012).

    CAS  PubMed  Google Scholar 

  78. 78.

    Nywening, T. M. et al. Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 67, 1112–1123 (2018).

    CAS  PubMed  Google Scholar 

  79. 79.

    Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Kershaw, M. H. et al. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther. 13, 1971–1980 (2002).

    CAS  PubMed  Google Scholar 

  81. 81.

    Di Stasi, A. et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113, 6392–6402 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Craddock, J. A. et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother. 33, 780–788 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Jin, L. et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat. Commun. 10, 4016 (2019).

  84. 84.

    Liu, G. et al. CXCR2-modified CAR-T cells have enhanced trafficking ability that improves treatment of hepatocellular carcinoma. Eur. J. Immunol. 50, 712–724 (2020).

    CAS  PubMed  Google Scholar 

  85. 85.

    Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    CAS  PubMed  Google Scholar 

  86. 86.

    Chung, A. S., Lee, J. & Ferrara, N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer 10, 505–514 (2010).

    CAS  PubMed  Google Scholar 

  87. 87.

    Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    CAS  PubMed  Google Scholar 

  88. 88.

    Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453, 410–414 (2008).

    CAS  PubMed  Google Scholar 

  89. 89.

    Jin, Y. et al. RGS5, a hypoxia-inducible apoptotic stimulator in endothelial cells. J. Biol. Chem. 284, 23436–23443 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Wang, J. et al. Hepatic regulator of G protein signaling 5 ameliorates Nonalcoholic Fatty Liver Disease by suppressing Transforming Growth Factor Beta-Activated Kinase 1-c-Jun-N-Terminal Kinase/p38 Signaling. Hepatology 73, 104–125 (2021).

    CAS  PubMed  Google Scholar 

  91. 91.

    Li, B. et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin. Cancer Res. 12, 6808–6816 (2006).

    CAS  PubMed  Google Scholar 

  92. 92.

    Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171–6180 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl Acad. Sci. USA 109, 17561–17566 (2012).

    CAS  PubMed  Google Scholar 

  94. 94.

    Chinnasamy, D. et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest. 120, 3953–3968 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Wang, W. et al. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther. 20, 970–978 (2013).

    CAS  PubMed  Google Scholar 

  96. 96.

    Niederman, T. M. et al. Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc. Natl Acad. Sci. USA 99, 7009–7014 (2002).

    CAS  PubMed  Google Scholar 

  97. 97.

    Santoro, S. P. et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol. Res. 3, 68–84 (2015).

    CAS  PubMed  Google Scholar 

  98. 98.

    Fu, X., Rivera, A., Tao, L. & Zhang, X. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery. Int. J. Cancer 133, 2483–2492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Byrd, T. T. et al. TEM8/ANTXR1-specific CAR T cells as a targeted therapy for triple-negative breast cancer. Cancer Res. 78, 489–500 (2018).

    CAS  PubMed  Google Scholar 

  100. 100.

    Xie, Y. J. et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl Acad. Sci. USA 116, 7624–7631 (2019).

    CAS  PubMed  Google Scholar 

  101. 101.

    Zhuang, X. et al. CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth. JCI Insight 5, e138808 (2020).

  102. 102.

    Petrovic, K. et al. TEM8/ANTXR1-specific CAR T cells mediate toxicity in vivo. PLoS ONE 14, e0224015 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Curnis, F. et al. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res. 62, 867–874 (2002).

    CAS  PubMed  Google Scholar 

  104. 104.

    Pasqualini, R. et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60, 722–727 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    van Laarhoven, H. W. et al. Effects of the tumor vasculature targeting agent NGR-TNF on the tumor microenvironment in murine lymphomas. Invest. N. Drugs 24, 27–36 (2006).

    CAS  Google Scholar 

  106. 106.

    Calcinotto, A. et al. Targeting TNF-alpha to neoangiogenic vessels enhances lymphocyte infiltration in tumors and increases the therapeutic potential of immunotherapy. J. Immunol. 188, 2687–2694 (2012).

    CAS  PubMed  Google Scholar 

  107. 107.

    Bellone, M., Calcinotto, A. & Corti, A. Won’t you come on in? How to favor lymphocyte infiltration in tumors. Oncoimmunology 1, 986–988 (2012).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Dondossola, E. et al. Chromogranin A restricts drug penetration and limits the ability of NGR-TNF to enhance chemotherapeutic efficacy. Cancer Res. 71, 5881–5890 (2011).

    CAS  PubMed  Google Scholar 

  109. 109.

    Johansson, A., Hamzah, J., Payne, C. J. & Ganss, R. Tumor-targeted TNFalpha stabilizes tumor vessels and enhances active immunotherapy. Proc. Natl Acad. Sci. USA 109, 7841–7846 (2012).

    CAS  PubMed  Google Scholar 

  110. 110.

    Curnis, F. et al. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat. Biotechnol. 18, 1185–1190 (2000).

    CAS  PubMed  Google Scholar 

  111. 111.

    Lorusso, D. et al. Phase II study of NGR-hTNF in combination with doxorubicin in relapsed ovarian cancer patients. Br. J. Cancer 107, 37–42 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Werb, Z. & Lu, P. The role of stroma in tumor development. Cancer J. 21, 250–253 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Scanlan, M. J. et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc. Natl Acad. Sci. USA 91, 5657–5661 (1994).

    CAS  PubMed  Google Scholar 

  114. 114.

    Garin-Chesa, P., Old, L. J. & Rettig, W. J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl Acad. Sci. USA 87, 7235–7239 (1990).

    CAS  PubMed  Google Scholar 

  115. 115.

    Busek, P., Mateu, R., Zubal, M., Kotackova, L. & Sedo, A. Targeting fibroblast activation protein in cancer—prospects and caveats. Front. Biosci. 23, 1933–1968 (2018).

    CAS  Google Scholar 

  116. 116.

    Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Roberts, E. W. et al. Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 210, 1137–1151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Kakarla, S. et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol. Ther. 21, 1611–1620 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Schuberth, P. C. et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J. Transl. Med. 11, 187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Wang, L. C. et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2, 154–166 (2014).

    CAS  PubMed  Google Scholar 

  121. 121.

    Lo, A. et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 75, 2800–2810 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    CAS  PubMed  Google Scholar 

  123. 123.

    Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Friberg, M. et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J. Cancer 101, 151–155 (2002).

    CAS  PubMed  Google Scholar 

  126. 126.

    Frumento, G. et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196, 459–468 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Ninomiya, S. et al. Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann. Hematol. 90, 409–416 (2011).

    CAS  PubMed  Google Scholar 

  128. 128.

    Ninomiya, S. et al. Indoleamine 2,3-dioxygenase expression and serum kynurenine concentrations in patients with diffuse large B-cell lymphoma. Leuk. Lymphoma 53, 1143–1145 (2012).

    CAS  PubMed  Google Scholar 

  129. 129.

    Liu, X. et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115, 3520–3530 (2010).

    CAS  PubMed  Google Scholar 

  130. 130.

    Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D. & Allison, J. P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Wainwright, D. A. et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin. Cancer Res. 20, 5290–5301 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Spranger, S. et al. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J. Immunother. Cancer 2, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Ninomiya, S. et al. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 125, 3905–3916 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Barsoum, I. B., Smallwood, C. A., Siemens, D. R. & Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74, 665–674 (2014).

    CAS  PubMed  Google Scholar 

  136. 136.

    Messai, Y. et al. Renal cell carcinoma programmed death-ligand 1, a new direct target of hypoxia-inducible factor-2 alpha, is regulated by von hippel-lindau gene mutation status. Eur. Urol. 70, 623–632 (2016).

    CAS  PubMed  Google Scholar 

  137. 137.

    Deng, J. et al. Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Immunol. Res. 7, 1079–1090 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Soto-Pantoja, D. R. et al. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res. 74, 6771–6783 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Zhang, H. et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc. Natl Acad. Sci. USA 112, E6215–E6223 (2015).

    CAS  PubMed  Google Scholar 

  140. 140.

    Hasmim, M. et al. Hypoxia-dependent inhibition of tumor cell susceptibility to CTL-mediated lysis involves NANOG induction in target cells. J. Immunol. 187, 4031–4039 (2011).

    CAS  PubMed  Google Scholar 

  141. 141.

    Baginska, J. et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl Acad. Sci. USA 110, 17450–17455 (2013).

    CAS  PubMed  Google Scholar 

  142. 142.

    Yan, W. H. HLA-G expression in cancers: potential role in diagnosis, prognosis and therapy. Endocr. Metab. Immune Disord. Drug Targets 11, 76–89 (2011).

    PubMed  Google Scholar 

  143. 143.

    Kren, L. et al. Expression of immune-modulatory molecules HLA-G and HLA-E by tumor cells in glioblastomas: an unexpected prognostic significance? Neuropathology 31, 129–134 (2011).

    PubMed  Google Scholar 

  144. 144.

    Andersson, E. et al. Non-classical HLA-class I expression in serous ovarian carcinoma: Correlation with the HLA-genotype, tumor infiltrating immune cells and prognosis. Oncoimmunology 5, e1052213 (2016).

    PubMed  Google Scholar 

  145. 145.

    Xie, H. & Simon, M. C. Oxygen availability and metabolic reprogramming in cancer. J. Biol. Chem. 292, 16825–16832 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    CAS  PubMed  Google Scholar 

  147. 147.

    Wigerup, C., Pahlman, S. & Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharm. Ther. 164, 152–169 (2016).

    CAS  Google Scholar 

  148. 148.

    Dannenberg, A. J. & Subbaramaiah, K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 4, 431–436 (2003).

    CAS  PubMed  Google Scholar 

  149. 149.

    Sitkovsky, M. V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 22, 657–682 (2004).

    CAS  PubMed  Google Scholar 

  150. 150.

    Newick, K. et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase A localization. Cancer Immunol. Res. 4, 541–551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Ligtenberg, M. A. et al. Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. J. Immunol. 196, 759–766 (2016).

    CAS  PubMed  Google Scholar 

  152. 152.

    Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    CAS  PubMed  Google Scholar 

  153. 153.

    Jandus, C., Bioley, G., Speiser, D. E. & Romero, P. Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol. Immunother. 57, 1795–1805 (2008).

    CAS  PubMed  Google Scholar 

  154. 154.

    Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    CAS  PubMed  Google Scholar 

  155. 155.

    Nefedova, Y. et al. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67, 11021–11028 (2007).

    CAS  PubMed  Google Scholar 

  156. 156.

    Kusmartsev, S. et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 63, 4441–4449 (2003).

    CAS  PubMed  Google Scholar 

  157. 157.

    Mirza, N. et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66, 9299–9307 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Ni, X., Hu, G. & Cai, X. The success and the challenge of all-trans retinoic acid in the treatment of cancer. Crit. Rev. Food Sci. Nutr. 59, S71–S80 (2019).

    CAS  PubMed  Google Scholar 

  159. 159.

    Serafini, P. et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691–2702 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Tobin, R. P., Davis, D., Jordan, K. R. & McCarter, M. D. The clinical evidence for targeting human myeloid-derived suppressor cells in cancer patients. J. Leukoc. Biol. 102, 381–391 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    CAS  PubMed  Google Scholar 

  162. 162.

    Zheng, Y. et al. Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells. Mol. Immunol. 54, 74–83 (2013).

    CAS  PubMed  Google Scholar 

  163. 163.

    Vila-Leahey, A. et al. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice. Oncoimmunology 5, e1151591 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. 164.

    Hanson, E. M., Clements, V. K., Sinha, P., Ilkovitch, D. & Ostrand-Rosenberg, S. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J. Immunol. 183, 937–944 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Molon, B. et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 208, 1949–1962 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  167. 167.

    Bulliard, Y. et al. Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32–42 (2013).

    CAS  PubMed  Google Scholar 

  170. 170.

    Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).

    CAS  PubMed  Google Scholar 

  171. 171.

    Sugiyama, D. et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc. Natl Acad. Sci. USA 110, 17945–17950 (2013).

    CAS  PubMed  Google Scholar 

  172. 172.

    Bulliard, Y. et al. OX40 engagement depletes intratumoral Tregs via activating FcgammaRs, leading to antitumor efficacy. Immunol. Cell Biol. 92, 475–480 (2014).

    CAS  PubMed  Google Scholar 

  173. 173.

    Arce Vargas, F. et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46, 577–586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Litzinger, M. T. et al. IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110, 3192–3201 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Foster, A. E. et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J. Immunother. 31, 500–505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Lacuesta, K. et al. Assessing the safety of cytotoxic T lymphocytes transduced with a dominant negative transforming growth factor-beta receptor. J. Immunother. 29, 250–260 (2006).

    CAS  PubMed  Google Scholar 

  177. 177.

    Zhang, L. et al. Inhibition of TGF-beta signaling in genetically engineered tumor antigen-reactive T cells significantly enhances tumor treatment efficacy. Gene Ther. 20, 575–580 (2013).

    CAS  PubMed  Google Scholar 

  178. 178.

    Kloss, C. C. et al. Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Wang, L. et al. Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor beta-insensitive CD8+ T cells. Clin. Cancer Res. 16, 164–173 (2010).

    CAS  PubMed  Google Scholar 

  180. 180.

    Quatromoni, J. G. et al. T cell receptor (TCR)-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFbeta) signaling mediate superior tumor regression in an animal model of adoptive cell therapy. J. Transl. Med. 10, 127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Prokopchuk, O., Liu, Y., Henne-Bruns, D. & Kornmann, M. Interleukin-4 enhances proliferation of human pancreatic cancer cells: evidence for autocrine and paracrine actions. Br. J. Cancer 92, 921–928 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Todaro, M. et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1, 389–402 (2007).

    CAS  PubMed  Google Scholar 

  183. 183.

    Todaro, M. et al. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ. 15, 762–772 (2008).

    CAS  PubMed  Google Scholar 

  184. 184.

    Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Roca, H. et al. IL-4 induces proliferation in prostate cancer PC3 cells under nutrient-depletion stress through the activation of the JNK-pathway and survivin up-regulation. J. Cell Biochem. 113, 1569–1580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Leen, A. M. et al. Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol. Ther. 22, 1211–1220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Mohammed, S. et al. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol. Ther. 25, 249–258 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (31821003 to X.L.) and Tsinghua-Peking Center for Life Sciences.

Author information

Affiliations

Authors

Contributions

G.L. and X.L. conceptualized this review, G.L. wrote the manuscript, and W.R., X.Z., and X.L. edited and revised the manuscript. All authors approved the manuscript to be published.

Corresponding author

Correspondence to Xin Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Rui, W., Zhao, X. et al. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol 18, 1085–1095 (2021). https://doi.org/10.1038/s41423-021-00655-2

Download citation

Keywords

  • CAR-T
  • Tumor
  • Microenvironment

Search

Quick links