Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inflammatory processes in the liver: divergent roles in homeostasis and pathology


The hepatic immune system is designed to tolerate diverse harmless foreign moieties to maintain homeostasis in the healthy liver. Constant priming and regulation ensure that appropriate immune activation occurs when challenged by pathogens and tissue damage. Failure to accurately discriminate, regulate, or effectively resolve inflammation offsets this balance, jeopardizing overall tissue health resulting from an either  overly tolerant or an overactive inflammatory response. Compelling scientific and clinical evidence links dysregulated hepatic immune and inflammatory responses upon sterile injury to several pathological conditions in the liver, particularly nonalcoholic steatohepatitis and ischemia-reperfusion injury. Murine and human studies have described interactions between diverse immune repertoires and nonhematopoietic cell populations in both physiological and pathological activities in the liver, although the molecular mechanisms driving these associations are not clearly understood. Here, we review the dynamic roles of inflammatory mediators in responses to sterile injury in the context of homeostasis and disease, the clinical implications of dysregulated hepatic immune activity and therapeutic developments to regulate liver-specific immunity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Knolle, P. A. & Wohlleber, D. Immunological functions of liver sinusoidal endothelial cells. Cell. Mol. Immunol. 13, 347–353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kubes, P. & Jenne, C. Immune responses in the liver. Annu. Rev. Immunol. 36, 247–277 (2018).

    CAS  PubMed  Google Scholar 

  3. 3.

    Surewaard, B. G. J. & Kubes, P. Measurement of bacterial capture and phagosome maturation of Kupffer cells by intravital microscopy. Methods 128, 12–19 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Zeng, Z. et al. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne gram-positive bacteria. Cell Host Microbe 20, 99–106 (2016).

    CAS  PubMed  Google Scholar 

  5. 5.

    Horst, A. K. et al. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell. Mol. Immunol. 13, 277–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Thomson, A. W. et al. Immunobiology of liver dendritic cells. Immunol. Cell Biol. 80, 65–73 (2002).

    PubMed  Google Scholar 

  7. 7.

    Webb, L. M. et al. Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO J. 36, 2404–2418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kelly, A. et al. CD141+ myeloid dendritic cells are enriched in healthy human liver. J. Hepatol. 60, 135–142 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Nati, M. et al. The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev. Endocr. Metab. Disord. 17, 29–39 (2016).

    CAS  PubMed  Google Scholar 

  10. 10.

    Ochando, J. et al. Tolerogenic dendritic cells in organ transplantation. Transpl. Int. 33, 113–127 (2020).

    PubMed  Google Scholar 

  11. 11.

    Arrese, M. et al. Innate immunity and inflammation in NAFLD/NASH. Digestive Dis. Sci. 61, 1294–1303 (2016).

    CAS  Google Scholar 

  12. 12.

    Dou, L. et al. Hepatic dendritic cells, the tolerogenic liver environment, and liver disease. Semin Liver Dis. 38, 170–180 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Tsuda, Y. et al. An immunosuppressive subtype of neutrophils identified in patients with hepatocellular carcinoma. J. Clin. Biochem. Nutr. 51, 12–32 (2012).

    Google Scholar 

  14. 14.

    Pillay, J. et al. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell. Mol. Life Sci. 70, 3813–3827 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 5, 3–8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Yao, L. et al. Characterization of liver monocytic myeloid-derived suppressor cells and their role in a murine model of non-alcoholic fatty liver disease. PLoS One 11, e0149948 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Doherty, D. G. & O’Farrelly, C. Innate and adaptive lymphoid cells in the human liver. Immunological Rev. 174, 5–20 (2000).

    CAS  Google Scholar 

  21. 21.

    Shen, Y. et al. Ambiguous roles of innate lymphoid cells in chronic development of liver diseases. World J. Gastroenterol. 24, 1962–1977 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kenna, T. et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J. Immunol. 171, 1775–1779 (2003).

    CAS  PubMed  Google Scholar 

  23. 23.

    Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250–1259 (2011).

    CAS  PubMed  Google Scholar 

  24. 24.

    Nemeth, E., Baird, A. W. & O’Farrelly, C. Microanatomy of the liver immune system. Semin Immunopathol. 31, 333–343 (2009).

    PubMed  Google Scholar 

  25. 25.

    Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Curry, M. P. et al. Expansion of peripheral blood CD5+ B cells is associated with mild disease in chronic hepatitis C virus infection. J. Hepatol. 32, 121–125 (2000).

    CAS  PubMed  Google Scholar 

  27. 27.

    Curry, M. P. et al. Expansion of innate CD5pos B cells expressing high levels of CD81 in hepatitis C virus infected liver. J. Hepatol. 38, 642–650 (2003).

    CAS  PubMed  Google Scholar 

  28. 28.

    Monteverde, A., Ballarè, M. & Pileri, S. Hepatic lymphoid aggregates in chronic hepatitis C and mixed cryoglobulinemia. Springe. Semin. Immunopathol. 19, 99–110 (1997).

    CAS  Google Scholar 

  29. 29.

    Doherty, D. G. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J. Autoimmun. 66, 60–75 (2016).

    CAS  PubMed  Google Scholar 

  30. 30.

    Gao, B., Jeong, W. I. & Tian, Z. Liver: an organ with predominant innate immunity. Hepatology 47, 729–736 (2008).

    CAS  PubMed  Google Scholar 

  31. 31.

    Krueger, P. D. et al. Regulation of NK cell repertoire and function in the liver. Crit. Rev. Immunol. 31, 43–52 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Taniguchi, H. et al. Presence of hematopoietic stem cells in the adult liver. Nat. Med. 2, 198–203 (1996).

    CAS  PubMed  Google Scholar 

  33. 33.

    Watanabe, H. et al. c-kit+ stem cells and thymocyte precursors in the livers of adult mice. J. Exp. Med. 184, 687–693 (1996).

    CAS  PubMed  Google Scholar 

  34. 34.

    Crosbie, O. M. et al. In vitro evidence for the presence of hematopoietic stem cells in the adult human liver. Hepatology 29, 1193–1198 (1999).

    CAS  PubMed  Google Scholar 

  35. 35.

    Wolber, F. M. et al. Roles of spleen and liver in development of the murine hematopoietic system. Exp. Hematol. 30, 1010–1019 (2002).

    CAS  PubMed  Google Scholar 

  36. 36.

    Jiang, X. et al. Characterizing the lymphopoietic kinetics and features of hematopoietic progenitors contained in the adult murine liver in vivo. PLoS One 8, e76762 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lysakova‐Devine, T. & O’Farrelly, C. Tissue‐specific NK cell populations and their origin. J. Leukoc. Biol. 96, 981–990 (2014).

    PubMed  Google Scholar 

  38. 38.

    Golden‐Mason, L. et al. Differential expression of lymphoid and myeloid markers on differentiating hematopoietic stem cells in normal and tumor‐bearing adult human liver. Hepatology 31, 1251–1256 (2000).

    PubMed  Google Scholar 

  39. 39.

    Arnold, B. Parenchymal cells in immune and tolerance induction. Immunol. Lett. 89, 225–228 (2003).

    CAS  PubMed  Google Scholar 

  40. 40.

    Wong, Y. C. et al. Immune outcomes in the liver: Is CD8 T cell fate determined by the environment? J. Hepatol. 63, 1005–1014 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Burghardt, S. et al. Hepatocytes contribute to immune regulation in the liver by activation of the Notch signaling pathway in T cells. J. Immunol. 191, 5574–5582 (2013).

    CAS  PubMed  Google Scholar 

  42. 42.

    MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 1–21 (2018).

    CAS  Google Scholar 

  43. 43.

    Guillot, A. & Tacke, F. Liver macrophages: old dogmas and new insights. Hepatol. Commun. 3, 730–743 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Gebhardt, R. & Matz-Soja, M. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J. Gastroenterol. 20, 8491 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Stamataki, Z. & Swadling, L. The liver as an immunological barrier redefined by single-cell analysis. Immunology 160, 157–170 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Zhao, J. et al. Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human. Cell Discov. 6, 22 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Hossain, M. & Kubes, P. Innate immune cells orchestrate the repair of sterile injury in the liver and beyond. Eur. J. Immunol. 49, 831–841 (2019).

    CAS  PubMed  Google Scholar 

  52. 52.

    Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  53. 53.

    Kubes, P. & Mehal, W. Z. Sterile inflammation in the liver. Gastroenterology 143, 1158–1172 (2012).

    CAS  PubMed  Google Scholar 

  54. 54.

    Nakatani, Y. et al. Endotoxin clearance and its relation to hepatic and renal disturbances in rats with liver cirrhosis. Liver 21, 64–70 (2001).

    CAS  PubMed  Google Scholar 

  55. 55.

    Robinson, M. W., Harmon, C. & O’Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell. Mol. Immunol. 13, 267–276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Kumar, V. NKT-cell subsets: promoters and protectors in inflammatory liver disease. J. Hepatol. 59, 618–620 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Deng, Z. B. et al. Immature myeloid cells induced by a high‐fat diet contribute to liver inflammation. Hepatology 50, 1412–1420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Arrenberg, P., Maricic, I. & Kumar, V. Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology 140, 646–655 (2011).

    CAS  PubMed  Google Scholar 

  59. 59.

    Halder, R. C. et al. Type II NKT cell–mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J. Clin. Investig. 117, 2302–2312 (2007).

    CAS  PubMed  Google Scholar 

  60. 60.

    Ertunc, M. E. & Hotamisligil, G. S. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J. Lipid Res. 57, 2099–2114 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Ilan, Y., Shailubhai, K. & Sanyal, A. Immunotherapy with oral administration of humanized anti-CD3 monoclonal antibody: a novel gut-immune system-based therapy for metaflammation and NASH. Clin. Exp. Immunol. 193, 275–283 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Ju, C. & Tacke, F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell. Mol. Immunol. 13, 316–327 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Lanthier, N. et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G107–G116 (2010).

    CAS  PubMed  Google Scholar 

  64. 64.

    Rivera, C. A. et al. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J. Hepatol. 47, 571–579 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lefkowitch, J. H., Haythe, J. H. & Regent, N. Kupffer cell aggregation and perivenular distribution in steatohepatitis. Mod. Pathol. 15, 699–704 (2002).

    PubMed  Google Scholar 

  66. 66.

    Bieghs, V. & Trautwein, C. The innate immune response during liver inflammation and metabolic disease. Trends Immunol. 34, 446–452 (2013).

    CAS  PubMed  Google Scholar 

  67. 67.

    Bertola, A. et al. Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS One 5, e13577 (2010).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Miura, K. et al. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1310–G1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Galastri, S. et al. Lack of CC chemokine ligand 2 differentially affects inflammation and fibrosis according to the genetic background in a murine model of steatohepatitis. Clin. Sci. 123, 459–471 (2012).

    CAS  Google Scholar 

  70. 70.

    Wang, H. et al. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell. Mol. Immunol. 18.1, 73–91 (2021).

    Google Scholar 

  71. 71.

    Tacke, F. & Zimmermann, H. W. Macrophage heterogeneity in liver injury and fibrosis. J. Hepatol. 60, 1090–1096 (2014).

    CAS  PubMed  Google Scholar 

  72. 72.

    Dixon, L. J. et al. Kupffer cells in the liver. Compr. Physiol. 3, 785–797 (2013).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Fallowfield, J. A. et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol. 178, 5288–5295 (2007).

    CAS  PubMed  Google Scholar 

  74. 74.

    Seidman, J. S. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52, 1057–1074.e7 (2020).

    CAS  PubMed  Google Scholar 

  75. 75.

    Xiong, X. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell 75, 644–660.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Wen, Y. et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell. Mol. Immunol. 18, 45–56 (2020).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Van Hul, N. et al. Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver injury. Am. J. Pathol. 179, 1839–1850 (2011).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Huang, X. et al. Expression changes of activin A in the development of hepatic fibrosis. World J. Gastroenterol. 7, 37 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Gressner, O. A. et al. Intracrine signalling of activin A in hepatocytes upregulates connective tissue growth factor (CTGF/CCN2) expression. Liver Int. 28, 1207–1216 (2008).

    CAS  PubMed  Google Scholar 

  80. 80.

    Kiagiadaki, F. et al. Activin-A causes Hepatic stellate cell activation via the induction of TNFα and TGFβ in Kupffer cells. Biochim Biophys. Acta Mol. Basis Dis. 1864, 891–899 (2018).

    CAS  PubMed  Google Scholar 

  81. 81.

    Inzaugarat, M. E. et al. Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J. Clin. Immunol. 31, 1120–1130 (2011).

    PubMed  Google Scholar 

  82. 82.

    Gadd, V. L. et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 59, 1393–1405 (2014).

    PubMed  Google Scholar 

  83. 83.

    Stockinger, B., Veldhoen, M. & Martin, B. Th17 T cells: linking innate and adaptive immunity. Semin Immunol. 19, 353–361 (2007).

    CAS  PubMed  Google Scholar 

  84. 84.

    Winer, D. A. et al. B Lymphocytes in obesity-related adipose tissue inflammation and insulin resistance. Cell. Mol. Life Sci. 71, 1033–1043 (2014).

    CAS  PubMed  Google Scholar 

  85. 85.

    Lee-Montiel, F. T. et al. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp. Biol. Med. 242, 1617–1632 (2017).

    CAS  Google Scholar 

  86. 86.

    Wilson, G. K., Tennant, D. A. & McKeating, J. A. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J. Hepatol. 61, 1397–1406 (2014).

    CAS  PubMed  Google Scholar 

  87. 87.

    Katz, N. & Jungermann, K. Autoregulatory shift from fructolysis to lactate gluconeogenesis in rat hepatocyte suspensions. The problem of metabolic zonation of liver parenchyma. Biol. Chem. 357, 359 (1976).

    CAS  Google Scholar 

  88. 88.

    Kietzmann, T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11, 622–630 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Bhandari, T. et al. HIF-1α influences myeloid cell antigen presentation and response to subcutaneous OVA vaccination. J. Mol. Med. 91, 1199–1205 (2013).

    CAS  PubMed  Google Scholar 

  90. 90.

    Acosta-Iborra, B. et al. Macrophage oxygen sensing modulates antigen presentation and phagocytic functions involving IFN-γ production through the HIF-1α transcription factor. J. Immunol. 182, 3155–3164 (2009).

    CAS  PubMed  Google Scholar 

  91. 91.

    Clambey, E. T. et al. Hypoxia-inducible factor-1 alpha–dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA 109, E2784–E2793 (2012).

    CAS  PubMed  Google Scholar 

  92. 92.

    Ben‐Shoshan, J. et al. Hypoxia controls CD4+ CD25+ regulatory T‐cell homeostasis via hypoxia‐inducible factor‐1α. Eur. J. Immunol. 38, 2412–2418 (2008).

    PubMed  Google Scholar 

  93. 93.

    Abu-Amara, M. et al. Liver ischemia/reperfusion injury: processes in inflammatory networks—a review. Liver Transpl. 16, 1016–1032 (2010).

    PubMed  Google Scholar 

  94. 94.

    Kuboki, S. et al. Distinct contributions of CD4+ T cell subsets in hepatic ischemia/reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1054–G1059 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Taniai, H. et al. Susceptibility of murine periportal hepatocytes to hypoxia-reoxygenation: role for NO and Kupffer cell-derived oxidants. Hepatology 39, 1544–1552 (2004).

    CAS  PubMed  Google Scholar 

  96. 96.

    Hanschen, M. et al. Reciprocal activation between CD4+ T cells and Kupffer cells during hepatic ischemia-reperfusion. Transplantation 86, 710–718 (2008).

    PubMed  Google Scholar 

  97. 97.

    Quesnelle, K. M., Bystrom, P. V. & Toledo-Pereyra, L. H. Molecular responses to ischemia and reperfusion in the liver. Arch. Toxicol. 89, 651–657 (2015).

    CAS  PubMed  Google Scholar 

  98. 98.

    Woolbright, B. L. & Jaeschke, H. The impact of sterile inflammation in acute liver injury. J. Clin. Transl. Res. 3(Suppl 1), 170–188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Jaeschke, H., Smith, C. V. & Mitchell, J. R. Hypoxic damage generates reactive oxygen species in isolated perfused rat liver. Biochem Biophys. Res Commun. 150, 568–574 (1988).

    CAS  PubMed  Google Scholar 

  100. 100.

    Jaeschke, H. et al. Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic. Res Commun. 15, 277–284 (1991).

    CAS  PubMed  Google Scholar 

  101. 101.

    Jaeschke, H. et al. Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am. J. Physiol. 264, G801–G809 (1993).

    CAS  PubMed  Google Scholar 

  102. 102.

    Tsung, A. et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 201, 1135–1143 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Hasegawa, T. et al. Reduced inflammatory response and increased microcirculatory disturbances during hepatic ischemia-reperfusion injury in steatotic livers of ob/ob mice. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1385–G1395 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Jang, J. H. et al. Ischemic preconditioning and intermittent clamping confer protection against ischemic injury in the cirrhotic mouse liver. Liver Transpl. 14, 980–988 (2008).

    PubMed  Google Scholar 

  105. 105.

    Macshut, M. et al. Older donor age is a risk factor for negative outcomes after adult living donor liver transplantation using small‐for‐size grafts. Liver Transplant. 25, 1524–1532 (2019).

    Google Scholar 

  106. 106.

    Tanemura, A. et al. Donor age affects liver regeneration during early period in the graft liver and late period in the remnant liver after living donor liver transplantation. World J. Surg. 36, 1102–1111 (2012).

    PubMed  Google Scholar 

  107. 107.

    Okaya, T. et al. Age-dependent responses to hepatic ischemia/reperfusion injury. Shock 24, 421–427 (2005).

    CAS  PubMed  Google Scholar 

  108. 108.

    Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    CAS  PubMed  Google Scholar 

  109. 109.

    Saijou, E. et al. Neutrophils alleviate fibrosis in the CCl4‐induced mouse chronic liver injury model. Hepatol. Commun. 2, 703–717 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Lu, L. et al. Innate immune regulations and liver ischemia-reperfusion injury. Transplantation 100, 2601–2610 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Elnaggar, A. S. & Guarrera, J. V. The marginal liver donor and organ preservation strategies, in Liver Anesthesiology and Critical Care Medicine. (ed Wagener, G.) 207–220 (Springer, 2018).

  112. 112.

    Ilan, Y. Review article: novel methods for the treatment of non-alcoholic steatohepatitis—targeting the gut immune system to decrease the systemic inflammatory response without immune suppression. Alimentary Pharmacol. Therapeutics 44, 1168–1182 (2016).

    CAS  Google Scholar 

  113. 113.

    Ilan, Y. et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl Acad. Sci. USA 107, 9765–9770 (2010).

    CAS  PubMed  Google Scholar 

  114. 114.

    Mizrahi, M. et al. Oral administration of anti-CD3 MAB to patients with NASH is safe, promotes regulatory T cells, decreases liver enzymes, and alleviates insulin resistance: results of a phase IIA blinded placebo-controlled trial. Hepatology 54, 117 (2011).

  115. 115.

    Verdam, F. J. et al. Novel evidence for chronic exposure to endotoxin in human nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 45, 149–152 (2011).

    CAS  PubMed  Google Scholar 

  116. 116.

    Adar, T. et al. Oral administration of immunoglobulin G-enhanced colostrum alleviates insulin resistance and liver injury and is associated with alterations in natural killer T cells. Clin. Exp. Immunol. 167, 252–260 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Baeck, C. et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C(+) macrophage infiltration in mice. Hepatology 59, 1060–1072 (2014).

    CAS  PubMed  Google Scholar 

  118. 118.

    Ehling, J. et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 63, 1960–1971 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Laing, R. W. et al. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open 7 (2017).

  120. 120.

    Mergental, H. et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat. Commun. 11, 1–12 (2020).

    Google Scholar 

  121. 121.

    Dutkowski, P. et al. Evolving trends in machine perfusion for liver transplantation. Gastroenterology 156, 1542–1547 (2019).

    PubMed  Google Scholar 

  122. 122.

    Dutkowski, P. et al. Challenges to liver transplantation and strategies to improve outcomes. Gastroenterology 148, 307–323 (2015).

    PubMed  Google Scholar 

  123. 123.

    Nasralla, D. et al. A randomized trial of normothermic preservation in liver transplantation. Nature 557, 50–56 (2018).

    CAS  PubMed  Google Scholar 

  124. 124.

    Schlegel, A. et al. Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation. J. Hepatol. 70, 50–57 (2019).

    CAS  PubMed  Google Scholar 

  125. 125.

    Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem J. 417, 1–13 (2009).

    CAS  PubMed  Google Scholar 

  126. 126.

    Schlegel, A. et al. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J. Hepatol. 58, 278–286 (2013).

    PubMed  Google Scholar 

  127. 127.

    Iskender, I. et al. Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion. J. Heart Lung Transplant. 37, 283–291 (2018).

    Google Scholar 

  128. 128.

    Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Ogger, P. P. et al. Itaconate controls the severity of pulmonary fibrosis. Sci. Immunol. 5, eabc1884 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    O’Connell, J. et al. The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PloS One 5, e9997 (2010).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Markose, D. et al. Immune cell regulation of liver regeneration and repair. J. Immunol. Regenerative Med. 2, 1–10 (2018).

    Google Scholar 

  132. 132.

    Jungermann, K. & Kietzmann, T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev. Nutr. 16, 179–203 (1996).

    CAS  PubMed  Google Scholar 

  133. 133.

    Fu, P. & W. Li. Chapter 8—nitric oxide in liver ischemia–reperfusion injury, in Liver Pathophysiology (ed. Muriel, P.) 125–127 (Academic Press: Boston, 2017).

  134. 134.

    Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).

    CAS  PubMed  Google Scholar 

Download references


This research was supported by an SFI Frontiers Grant.

Author information




O.A. drafted the manuscript, designed the figures, and contributed to the main conceptual ideas. M. W. R. contributed to the writing, provided critical feedback, and helped shape the manuscript. C.O.F. designed and directed the review, supervised the work, and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Cliona O’Farrelly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, O., Robinson, M.W. & O’Farrelly, C. Inflammatory processes in the liver: divergent roles in homeostasis and pathology. Cell Mol Immunol 18, 1375–1386 (2021).

Download citation


  • homeostasis
  • immunology
  • inflammation
  • liver


Quick links