Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

HLA class I loss in colorectal cancer: implications for immune escape and immunotherapy

Abstract

T cell-mediated immune therapies have emerged as a promising treatment modality in different malignancies including colorectal cancer (CRC). However, only a fraction of patients currently respond to treatment. Understanding the lack of responses and finding biomarkers with predictive value is of great importance. There is evidence that CRC is a heterogeneous disease and several classification systems have been proposed that are based on genomic instability, immune cell infiltration, stromal content and molecular subtypes of gene expression. Human leukocyte antigen class I (HLA-I) plays a pivotal role in presenting processed antigens to T lymphocytes, including tumour antigens. These molecules are frequently lost in different types of cancers, including CRC, resulting in tumour immune escape from cytotoxic T lymphocytes during the natural history of cancer development. The aim of this review is to (i) summarize the prevalence and molecular mechanisms behind HLA-I loss in CRC, (ii) discuss HLA-I expression/loss in the context of the newly identified CRC molecular subtypes, (iii) analyze the HLA-I phenotypes of CRC metastases disseminated via blood or the lymphatic system, (iv) discuss strategies to recover/circumvent HLA-I expression/loss and finally (v) review the role of HLA class II (HLA-II) in CRC prognosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Garrido, F. et al. Natural history of HLA expression during tumour development. Immunol. Today 14, 491–499 (1993).

    CAS  PubMed  Google Scholar 

  2. 2.

    Bodmer, W. F. et al. Tumor escape from immune response by variation in HLA expression and other mechanisms. Ann. N. Y. Acad. Sci. 690, 42–49 (1993).

    CAS  PubMed  Google Scholar 

  3. 3.

    Marincola, F. M., Jaffee, E. M., Hicklin, D. J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74, 181–273 (2000).

    CAS  PubMed  Google Scholar 

  4. 4.

    Seliger, B., Cabrera, T., Garrido, F. & Ferrone, S. HLA class I antigen abnormalities and immune escape by malignant cells. Semin. Cancer Biol. 12, 3–13 (2002).

    CAS  PubMed  Google Scholar 

  5. 5.

    Aptsiauri, N., Ruiz-Cabello, F. & Garrido, F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr. Opin. Immunol. 51, 123–132 (2018).

    CAS  PubMed  Google Scholar 

  6. 6.

    Mendez, R. et al. Impact of HLA class I alterations in patients undergoing T cell specific immunotherapy. Immunobiology of the human MHC. Proc. 13th Int. Histocompatibility Workshop Conf. (IHWC) 2002 2, 512–514 (2006). IHWG Press.

    Google Scholar 

  7. 7.

    Thor Straten, P. & Garrido, F. Targetless T cells in cancer immunotherapy. J. Immunother. Cancer 4, 23 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Carretero, R. et al. Bacillus Calmette-Guerin immunotherapy of bladder cancer induces selection of human leukocyte antigen class I-deficient tumor cells. Int. J. Cancer 129, 839–846 (2011).

    CAS  PubMed  Google Scholar 

  9. 9.

    Benitez, R. et al. Mutations of the beta2-microglobulin gene result in a lack of HLA class I molecules on melanoma cells of two patients immunized with MAGE peptides. Tissue Antigens 52, 520–529 (1998).

    CAS  PubMed  Google Scholar 

  10. 10.

    Marchand, M. et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int. J. Cancer 80, 219–230 (1999).

    CAS  PubMed  Google Scholar 

  11. 11.

    Andersen, R. et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin. Cancer Res. 22, 3734–3745 (2016).

    CAS  PubMed  Google Scholar 

  12. 12.

    Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Garrido, F., Ruiz-Cabello, F. & Aptsiauri, N. Rejection versus escape: the tumor MHC dilemma. Cancer Immunol. Immunother. 66, 259–271 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Garrido, F. & Aptsiauri, N. Cancer immune escape: MHC expression in primary tumours versus metastases. Immunology 158, 255–266 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Garrido, F., Cabrera, T. & Aptsiauri, N. “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int. J. Cancer 127, 249–256 (2010).

    CAS  PubMed  Google Scholar 

  18. 18.

    Lampen, M. H. & van Hall, T. Strategies to counteract MHC-I defects in tumors. Curr. Opin. Immunol. 23, 293–298 (2011).

    CAS  PubMed  Google Scholar 

  19. 19.

    Ugurel, S. et al. MHC class-I downregulation in PD-1/PD-L1 inhibitor refractory Merkel cell carcinoma and its potential reversal by histone deacetylase inhibition: a case series. Cancer Immunol. Immunother. 68, 983–990 (2019).

    CAS  PubMed  Google Scholar 

  20. 20.

    Csiba, A., Whitwell, H. L. & Moore, M. Distribution of histocompatibility and leucocyte differentiation antigens in normal human colon and in benign and malignant colonic neoplasms. Br. J. Cancer 50, 699–709 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Momburg, F. et al. Loss of HLA-A,B,C and de novo expression of HLA-D in colorectal cancer. Int. J. Cancer 37, 179–184 (1986).

    CAS  PubMed  Google Scholar 

  22. 22.

    Moore, M., Ghosh, A. K., Johnston, D. & Street, A. J. Expression of MHC class II products on human colorectal cancer. An immunohistological and flow cytometric study. J. Immunogenet. 13, 201–209 (1986).

    CAS  PubMed  Google Scholar 

  23. 23.

    Gutierrez, J. et al. Class I and II HLA antigen distribution in normal mucosa, adenoma and colon carcinoma: relation with malignancy and invasiveness. Exp. Clin. Immunogenet. 4, 144–152 (1987).

    CAS  PubMed  Google Scholar 

  24. 24.

    Durrant, L. G. et al. Quantitation of MHC antigen expression on colorectal tumours and its association with tumour progression. Br. J. Cancer 56, 425–432 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Rees, R. C. et al. Loss of polymorphic A and B locus HLA antigens in colon carcinoma. Br. J. Cancer 57, 374–377 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Smith, M. E., Bodmer, W. F. & Bodmer, J. G. Selective loss of HLA-A,B,C locus products in colorectal adenocarcinoma. Lancet 1, 823–824 (1988).

    CAS  PubMed  Google Scholar 

  27. 27.

    Lopez-Nevot, M. A. et al. HLA class I gene expression on human primary tumours and autologous metastases: demonstration of selective losses of HLA antigens on colorectal, gastric and laryngeal carcinomas. Br. J. Cancer 59, 221–226 (1989).

    CAS  PubMed  Google Scholar 

  28. 28.

    Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    CAS  PubMed  Google Scholar 

  29. 29.

    Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  30. 30.

    Tsioulias, G. J. et al. Expression of HLA class I antigens in sporadic adenomas and histologically normal mucosa of the colon. Cancer Res. 53, 2374–2378 (1993).

    CAS  PubMed  Google Scholar 

  31. 31.

    Lakatos, E. et al. Evolutionary dynamics of neoantigens in growing tumors. Nat. Genet. 52, 1057–1066 (2020).

    PubMed  Google Scholar 

  32. 32.

    Kloor, M. et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int. J. Cancer 121, 454–458 (2007).

    CAS  PubMed  Google Scholar 

  33. 33.

    Horie, Y., Chiba, M., Iizuka, M., Igarashi, K. & Masamune, O. HLA antigens on colorectal adenoma and cancer cells. Tohoku J. Exp. Med. 160, 311–322 (1990).

    CAS  PubMed  Google Scholar 

  34. 34.

    Smith, M. E., Marsh, S. G., Bodmer, J. G., Gelsthorpe, K. & Bodmer, W. F. Loss of HLA-A,B,C allele products and lymphocyte function-associated antigen 3 in colorectal neoplasia. Proc. Natl Acad. Sci. USA 86, 5557–5561 (1989).

    CAS  PubMed  Google Scholar 

  35. 35.

    Chen, H. et al. Genomic and immune profiling of pre-invasive lung adenocarcinoma. Nat. Commun. 10, 5472 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Moller, P., Koretz, K., Schlag, P. & Momburg, F. Frequency of abnormal expression of HLA-A,B,C and HLA-DR molecules, invariant chain, and LFA-3 (CD58) in colorectal carcinoma and its impact on tumor recurrence. Int. J. Cancer Suppl. 6, 155–162 (1991).

    CAS  PubMed  Google Scholar 

  37. 37.

    Cabrera, T. et al. High frequency of altered HLA class I phenotypes in invasive colorectal carcinomas. Tissue Antigens 52, 114–123 (1998).

    CAS  PubMed  Google Scholar 

  38. 38.

    Ruiz-Cabello, F. et al. Molecular analysis of MHC-class-I alterations in human tumor cell lines. Int. J. Cancer Suppl. 6, 123–130 (1991).

    CAS  PubMed  Google Scholar 

  39. 39.

    Browning, M. et al. Mechanisms of loss of HLA class I expression on colorectal tumor cells. Tissue Antigens 47, 364–371 (1996).

    CAS  PubMed  Google Scholar 

  40. 40.

    Kaklamanis, L. et al. Loss of HLA class-I alleles, heavy chains and beta 2-microglobulin in colorectal cancer. Int. J. Cancer 51, 379–385 (1992).

    CAS  PubMed  Google Scholar 

  41. 41.

    Kloor, M., Michel, S. & von Knebel Doeberitz, M. Immune evasion of microsatellite unstable colorectal cancers. Int. J. Cancer 127, 1001–1010 (2010).

    CAS  PubMed  Google Scholar 

  42. 42.

    Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    CAS  PubMed  Google Scholar 

  43. 43.

    Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38, 787–793 (2006).

    CAS  PubMed  Google Scholar 

  44. 44.

    Kloor, M. & von Knebel Doeberitz, M. The immune biology of microsatellite-unstable cancer. Trends Cancer 2, 121–133 (2016).

    PubMed  Google Scholar 

  45. 45.

    Cabrera, C. M. et al. Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens 61, 211–219 (2003).

    CAS  PubMed  Google Scholar 

  46. 46.

    Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Bernal, M. et al. Genome-wide differential genetic profiling characterizes colorectal cancers with genetic instability and specific routes to HLA class I loss and immune escape. Cancer Immunol. Immunother. 61, 803–816 (2012).

    CAS  PubMed  Google Scholar 

  48. 48.

    Bernal, M., Ruiz-Cabello, F., Concha, A., Paschen, A. & Garrido, F. Implication of the beta2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol. Immunother. 61, 1359–1371 (2012).

    PubMed  Google Scholar 

  49. 49.

    Bicknell, D. C., Kaklamanis, L., Hampson, R., Bodmer, W. F. & Karran, P. Selection for beta 2-microglobulin mutation in mismatch repair-defective colorectal carcinomas. Curr. Biol. 6, 1695–1697 (1996).

    CAS  PubMed  Google Scholar 

  50. 50.

    Kloor, M. et al. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res. 65, 6418–6424 (2005).

    CAS  PubMed  Google Scholar 

  51. 51.

    Cabrera, C. M., Lopez-Nevot, M. A., Jimenez, P. & Garrido, F. Involvement of the chaperone tapasin in HLA-B44 allelic losses in colorectal tumors. Int. J. Cancer 113, 611–618 (2005).

    CAS  PubMed  Google Scholar 

  52. 52.

    Dierssen, J. W. et al. HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer 7, 33 (2007).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Grasso, C. S. et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 8, 730–749 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ling, A. et al. TAP1 down-regulation elicits immune escape and poor prognosis in colorectal cancer. Oncoimmunology 6, e1356143 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Yoshihama, S. et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc. Natl Acad. Sci. USA 113, 5999–6004 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Gurjao, C. et al. Intrinsic resistance to immune checkpoint blockade in a mismatch repair-deficient colorectal cancer. Cancer Immunol. Res. 7, 1230–1236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Umar, A., Risinger, J. I., Hawk, E. T. & Barrett, J. C. Testing guidelines for hereditary non-polyposis colorectal cancer. Nat. Rev. Cancer 4, 153–158 (2004).

    CAS  PubMed  Google Scholar 

  58. 58.

    Clendenning, M. et al. Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Fam. Cancer 17, 91–100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    de Miranda, N. F. et al. Infiltration of Lynch colorectal cancers by activated immune cells associates with early staging of the primary tumor and absence of lymph node metastases. Clin. Cancer Res. 18, 1237–1245 (2012).

    PubMed  Google Scholar 

  60. 60.

    Becht, E. et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin. Cancer Res. 22, 4057–4066 (2016).

    CAS  PubMed  Google Scholar 

  61. 61.

    Karpinski, P., Rossowska, J. & Sasiadek, M. M. Immunological landscape of consensus clusters in colorectal cancer. Oncotarget 8, 105299–105311 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Soldevilla, B. et al. The correlation between immune subtypes and consensus molecular subtypes in colorectal cancer identifies novel tumour microenvironment profiles, with prognostic and therapeutic implications. Eur. J. Cancer 123, 118–129 (2019).

    CAS  PubMed  Google Scholar 

  63. 63.

    Ijsselsteijn, M. E. et al. Revisiting immune escape in colorectal cancer in the era of immunotherapy. Br. J. Cancer 120, 815–818 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Pino, M. S. & Chung, D. C. The chromosomal instability pathway in colon cancer. Gastroenterology 138, 2059–2072 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Maleno, I. et al. Distribution of HLA class I altered phenotypes in colorectal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Immunogenetics 56, 244–253 (2004).

    CAS  PubMed  Google Scholar 

  66. 66.

    Maleno, I. et al. Frequent loss of heterozygosity in the beta2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics 63, 65–71 (2011).

    CAS  PubMed  Google Scholar 

  67. 67.

    Jimenez, P. et al. Chromosome loss is the most frequent mechanism contributing to HLA haplotype loss in human tumors. Int. J. Cancer 83, 91–97 (1999).

    CAS  PubMed  Google Scholar 

  68. 68.

    van den Bulk, J. et al. Neoantigen-specific immunity in low mutation burden colorectal cancers of the consensus molecular subtype 4. Genome Med. 11, 87 (2020).

    Google Scholar 

  69. 69.

    Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. WNT/beta-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 25, 3074–3083 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Xue, J. et al. Intrinsic beta-catenin signaling suppresses CD8(+) T-cell infiltration in colorectal cancer. Biomed. Pharmacother. 115, 108921 (2019).

    CAS  PubMed  Google Scholar 

  71. 71.

    Versteeg, R., Noordermeer, I. A., Kruse-Wolters, M., Ruiter, D. J. & Schrier, P. I. c-myc down-regulates class I HLA expression in human melanomas. EMBO J. 7, 1023–1029 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Yang, W., Li, Y., Gao, R., Xiu, Z. & Sun, T. MHC class I dysfunction of glioma stem cells escapes from CTL-mediated immune response via activation of Wnt/beta-catenin signaling pathway. Oncogene 39, 1098–1111 (2019).

    PubMed  Google Scholar 

  73. 73.

    Young, A., Lou, D. & McCormick, F. Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov. 3, 112–123 (2013).

    CAS  PubMed  Google Scholar 

  74. 74.

    Atkins, D. et al. MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int. J. Cancer 109, 265–273 (2004).

    CAS  PubMed  Google Scholar 

  75. 75.

    Ledys, F. et al. RAS status and neoadjuvant chemotherapy impact CD8+ cells and tumor HLA class I expression in liver metastatic colorectal cancer. J. Immunother. Cancer 6, 123 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Klampfer, L. et al. Oncogenic Ki-ras inhibits the expression of interferon-responsive genes through inhibition of STAT1 and STAT2 expression. J. Biol. Chem. 278, 46278–46287 (2003).

    CAS  PubMed  Google Scholar 

  77. 77.

    Liao, W. et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell. 35, 559–72 e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Sers, C. et al. Down-regulation of HLA Class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells. Int. J. Cancer 125, 1626–1639 (2009).

    CAS  PubMed  Google Scholar 

  79. 79.

    Coebergh van den Braak, R. R. J. et al. Interconnectivity between molecular subtypes and tumor stage in colorectal cancer. BMC Cancer 20, 850 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Yoo, S. Y. et al. Whole-slide image analysis reveals quantitative landscape of tumor-immune microenvironment in colorectal cancers. Clin. Cancer Res. 26, 870–881 (2020).

    CAS  PubMed  Google Scholar 

  81. 81.

    Garrido, F. et al. The escape of cancer from T cell-mediated immune surveillance: HLA Class I loss and tumor tissue architecture. Vaccines (Basel). 5, 7 (2017).

  82. 82.

    Perea, F. et al. HLA class I loss and PD-L1 expression in lung cancer: impact on T-cell infiltration and immune escape. Oncotarget 9, 4120–4133 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Geiser, A. G. et al. Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc. Natl Acad. Sci. USA 90, 9944–9948 (1993).

    CAS  PubMed  Google Scholar 

  84. 84.

    Ma, D. & Niederkorn, J. Y. Transforming growth factor-beta down-regulates major histocompatibility complex class I antigen expression and increases the susceptibility of uveal melanoma cells to natural killer cell-mediated cytolysis. Immunology 86, 263–269 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–30.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Romero, I. et al. MHC intratumoral heterogeneity may predict cancer progression and response to immunotherapy. Front. Immunol. 9, 102 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    del Campo, A. B. et al. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int. J. Cancer 134, 102–113 (2014).

    PubMed  Google Scholar 

  88. 88.

    Carretero, R. et al. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60, 439–447 (2008).

    CAS  PubMed  Google Scholar 

  89. 89.

    Menon, A. G. et al. Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab. Invest. 84, 493–501 (2004).

    CAS  PubMed  Google Scholar 

  90. 90.

    Garrido, F. et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol. Today 18, 89–95 (1997).

    CAS  PubMed  Google Scholar 

  91. 91.

    Watson, N. F. et al. Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int. J. Cancer 118, 6–10 (2006).

    CAS  PubMed  Google Scholar 

  92. 92.

    Demanet, C. et al. Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells: an escape mechanism from CTL and NK attack? Blood 103, 3122–3130 (2004).

    CAS  PubMed  Google Scholar 

  93. 93.

    Cabrera, T., Lopez-Nevot, M. A., Gaforio, J. J., Ruiz-Cabello, F. & Garrido, F. Analysis of HLA expression in human tumor tissues. Cancer Immunol. Immunother. 52, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  94. 94.

    Rodriguez, T. et al. Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer 7, 34 (2007).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    del Campo, A. B. et al. Efficient recovery of HLA class I expression in human tumor cells after beta2-microglobulin gene transfer using adenoviral vector: implications for cancer immunotherapy. Scand. J. Immunol. 70, 125–135 (2009).

    PubMed  Google Scholar 

  96. 96.

    del Campo, A. B. et al. Adenovirus expressing beta2-microglobulin recovers HLA class I expression and antitumor immunity by increasing T-cell recognition. Cancer Gene Ther. 21, 317–332 (2014).

    PubMed  Google Scholar 

  97. 97.

    del Campo, A. B., Carretero, J., Aptsiauri, N. & Garrido, F. Targeting HLA class I expression to increase tumor immunogenicity. Tissue Antigens 79, 147–154 (2012).

    PubMed  Google Scholar 

  98. 98.

    Pulido, M. et al. Restoration of MHC-I on tumor cells by Fhit transfection promotes immune rejection and acts as an individualized immunotherapeutic vaccine. Cancers (Basel). 12, 1563 (2020).

    CAS  PubMed Central  Google Scholar 

  99. 99.

    Rodriguez, G. M. et al. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8(+) T lymphocytes. Oncoimmunology 5, e1151593 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Kalbasi, A. et al. Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma. Sci. Transl. Med. 12, eabb0152 (2020).

    CAS  PubMed  Google Scholar 

  101. 101.

    Marincola, F. M. et al. Locus-specific analysis of human leukocyte antigen class I expression in melanoma cell lines. J. Immunother. Emphas. Tumor Immunol. 16, 13–23 (1994).

    CAS  Google Scholar 

  102. 102.

    Respa, A. et al. Association of IFN-gamma signal transduction defects with impaired HLA class I antigen processing in melanoma cell lines. Clin. Cancer Res. 17, 2668–2678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Sucker, A. et al. Acquired IFNgamma resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat. Commun. 8, 15440 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Simpson, J. A. et al. Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. Gut 59, 926–933 (2010).

    CAS  PubMed  Google Scholar 

  105. 105.

    Propper, D. J. et al. Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin. Cancer Res. 9, 84–92 (2003).

    CAS  PubMed  Google Scholar 

  106. 106.

    Zhang, S. et al. Systemic interferon-gamma increases MHC class I expression and T-cell infiltration in cold tumors: results of a phase 0 clinical trial. Cancer Immunol. Res. 7, 1237–1243 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Serrano, A. et al. Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2’-deoxycytidine treatment. Int. J. Cancer 94, 243–251 (2001).

    CAS  PubMed  Google Scholar 

  108. 108.

    Park, J., Thomas, S. & Munster, P. N. Epigenetic modulation with histone deacetylase inhibitors in combination with immunotherapy. Epigenomics 7, 641–652 (2015).

    CAS  PubMed  Google Scholar 

  109. 109.

    Vlkova, V. et al. Epigenetic regulations in the IFNgamma signalling pathway: IFNgamma-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes. Oncotarget 5, 6923–6935 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Li, H. et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 5, 587–598 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Luo, N. et al. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat. Commun. 9, 248 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Wang, X. et al. Histone deacetylase inhibition sensitizes PD1 blockade-resistant B-cell lymphomas. Cancer Immunol. Res. 7, 1318–1331 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Ebert, P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).

    CAS  PubMed  Google Scholar 

  114. 114.

    Kang, S. H. et al. Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma. Oncoimmunology 8, e1515057 (2019).

    PubMed  Google Scholar 

  115. 115.

    Liu, L. et al. The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res. 21, 1639–1651 (2015).

    CAS  PubMed  Google Scholar 

  116. 116.

    Huyghe, N., Baldin, P. & Van den Eynde, M. Immunotherapy with immune checkpoint inhibitors in colorectal cancer: what is the future beyond deficient mismatch-repair tumours? Gastroenterol. Rep. (Oxf.). 8, 11–24 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Garrido, G. et al. Upregulation of HLA class I expression on tumor cells by the anti-EGFR antibody nimotuzumab. Front. Pharmacol. 8, 595 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Angell, T. E., Lechner, M. G., Jang, J. K., LoPresti, J. S. & Epstein, A. L. MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro. Clin. Cancer Res. 20, 6034–6044 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Lazzari, C. et al. Combination of immunotherapy with chemotherapy and radiotherapy in lung cancer: is this the beginning of the end for cancer? Ther. Adv. Med. Oncol. 10, 1758835918762094 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Garnett, C. T. et al. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 64, 7985–7994 (2004).

    CAS  PubMed  Google Scholar 

  121. 121.

    Garrido, C. et al. Immunotherapy eradicates metastases with reversible defects in MHC class I expression. Cancer Immunol. Immunother. 60, 1257–1268 (2011).

    CAS  PubMed  Google Scholar 

  122. 122.

    Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia Lora, A. M. & van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 39, 44–51 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Ardolino, M. et al. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J. Clin. Invest. 124, 4781–4794 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Seo, H. et al. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat. Commun. 8, 15776 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    van Hall, T. et al. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat. Med. 12, 417–424 (2006).

    PubMed  Google Scholar 

  127. 127.

    Wolpert, E. Z. et al. Generation of CD8+ T cells specific for transporter associated with antigen processing deficient cells. Proc. Natl Acad. Sci. USA 94, 11496–11501 (1997).

    CAS  PubMed  Google Scholar 

  128. 128.

    Wang, X. et al. MHC class I-independent activation of virtual memory CD8 T cells induced by chemotherapeutic agent-treated cancer cells. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0463-2 (2020).

  129. 129.

    Concha, A. et al. Different patterns of HLA-DR antigen expression in normal epithelium, hyperplastic and neoplastic malignant lesions of the breast. Eur. J. Immunogenet. 22, 299–310 (1995).

    CAS  PubMed  Google Scholar 

  130. 130.

    Bedossa, P. et al. Expression of histocompatibility antigens and characterization of the lymphocyte infiltrate in hyperplastic polyps of the large bowel. Hum. Pathol. 21, 319–324 (1990).

    CAS  PubMed  Google Scholar 

  131. 131.

    Lovig, T. et al. Strong HLA-DR expression in microsatellite stable carcinomas of the large bowel is associated with good prognosis. Br. J. Cancer 87, 756–762 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Seliger, B., Ruiz-Cabello, F. & Garrido, F. IFN inducibility of major histocompatibility antigens in tumors. Adv. Cancer Res. 101, 249–276 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Axelrod, M. L., Cook, R. S., Johnson, D. B. & Balko, J. M. Biological consequences of MHC-II expression by tumor cells in cancer. Clin. Cancer Res. 25, 2392–2402 (2019).

    CAS  PubMed  Google Scholar 

  134. 134.

    Cabrera, T., Ruiz-Cabello, F. & Garrido, F. Biological implications of HLA-DR expression in tumours. Scand. J. Immunol. 41, 398–406 (1995).

    CAS  PubMed  Google Scholar 

  135. 135.

    Seliger, B., Kloor, M. & Ferrone, S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology 6, e1171447 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Dunne, M. R. et al. Characterising the prognostic potential of HLA-DR during colorectal cancer development. Cancer Immunol. Immunother. 69, 1577–1588 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Walsh, M. D. et al. HLA-DR expression is associated with better prognosis in sporadic Australian clinicopathological Stage C colorectal cancers. Int. J. Cancer 125, 1231–1237 (2009).

    CAS  PubMed  Google Scholar 

  138. 138.

    Michel, S. et al. Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int. J. Cancer 127, 889–898 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Surmann, E. M. et al. Association of high CD4-positive T cell infiltration with mutations in HLA class II-regulatory genes in microsatellite-unstable colorectal cancer. Cancer Immunol. Immunother. 64, 357–366 (2015).

    CAS  PubMed  Google Scholar 

  140. 140.

    Warabi, M., Kitagawa, M. & Hirokawa, K. Loss of MHC class II expression is associated with a decrease of tumor-infiltrating T cells and an increase of metastatic potential of colorectal cancer: immunohistological and histopathological analyses as compared with normal colonic mucosa and adenomas. Pathol. Res. Pract. 196, 807–815 (2000).

    CAS  PubMed  Google Scholar 

  141. 141.

    Dienstmann, R. et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 17, 79–92 (2017).

    CAS  PubMed  Google Scholar 

  142. 142.

    Waldburger, J. M. et al. Lessons from the bare lymphocyte syndrome: molecular mechanisms regulating MHC class II expression. Immunol. Rev. 178, 148–165 (2000).

    CAS  PubMed  Google Scholar 

  143. 143.

    Garrido, F. MHC/HLA class I loss in cancer cells. Adv. Exp. Med Biol. 1151, 1–95, https://doi.org/10.1007/978-3-030-17864-2 (2019). ISBN 978-3-030-17864-2 (eBook).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Biological samples and associated data of the patients included in the study were collected, processed and provided by the Biobank for Biomedical Research and Public Health of the Valencian Community (Biobank IBSP-CV) authorized in the National Registry of Biobanks Carlos III Health Institute (code number B.0000863), which is part of the Biobank Network of Valencia and the National Biobank Network Platform (PT13/0010/0064), following standard operating procedures, and their activity is supported by Ethics Committees and Scientific Committees. This work was supported by the grants from Instituto de Salud Carlos III, co-financed by European Regional Development Fund (FEDER) [PI11/01386, PI14/01978, PI16/00752, PI17/00197 and PI18/00826]. P. A. is supported by the Consejería de Salud, Junta de Andalucía through the contract ‘Nicolás Monardes’ [C-0013-2018]. We would like to thank Dr. Mónica Bernal for her excellent help in designing and making the figures included in this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Federico Garrido.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anderson, P., Aptsiauri, N., Ruiz-Cabello, F. et al. HLA class I loss in colorectal cancer: implications for immune escape and immunotherapy. Cell Mol Immunol 18, 556–565 (2021). https://doi.org/10.1038/s41423-021-00634-7

Download citation

Keywords

  • Colorectal cancer
  • Immune escape
  • HLA Class I

Search

Quick links