Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33

Abstract

In cancer, myeloid cells have tumor-supporting roles. We reported that the protein GPNMB (glycoprotein nonmetastatic B) was profoundly upregulated in macrophages interacting with tumor cells. Here, using mouse tumor models, we show that macrophage-derived soluble GPNMB increases tumor growth and metastasis in Gpnmb-mutant mice (DBA/2J). GPNMB triggers in the cancer cells the formation of self-renewing spheroids, which are characterized by the expression of cancer stem cell markers, prolonged cell survival and increased tumor-forming ability. Through the CD44 receptor, GPNMB mechanistically activates tumor cells to express the cytokine IL-33 and its receptor IL-1R1L. We also determined that recombinant IL-33 binding to IL-1R1L is sufficient to induce tumor spheroid formation with features of cancer stem cells. Overall, our results reveal a new paracrine axis, GPNMB and IL-33, which is activated during the cross talk of macrophages with tumor cells and eventually promotes cancer cell survival, the expansion of cancer stem cells and the acquisition of a metastatic phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belgiovine, C., D’Incalci, M., Allavena, P. & Frapolli, R. Tumor-associated macrophages and anti-tumor therapies: complex links. Cell. Mol. life Sci. 73, 2411–2424 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Biswas, S. K., Allavena, P. & Mantovani, A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin. Immunopathol. 35, 585–600 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Solinas, G. et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J. Immunol. 185, 642–652 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Mayi, T. H. et al. Human adipose tissue macrophages display activation of cancer-related pathways. J. Biol. Chem. 287, 21904–21913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rose, A. A. et al. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS ONE 5, e12093 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Weterman, M. A. et al. nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int. J. Cancer 60, 73–81 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Safadi, F. F. et al. Cloning and characterization of osteoactivin, a novel cDNA expressed in osteoblasts. J. Cell Biochem. 84, 12–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Shikano, S., Bonkobara, M., Zukas, P. K. & Ariizumi, K. Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J. Biol. Chem. 276, 8125–8134 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Haralanova-Ilieva, B., Ramadori, G. & Armbrust, T. Expression of osteoactivin in rat and human liver and isolated rat liver cells. J. Hepatol. 42, 565–572 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Ripoll, V. M., Irvine, K. M., Ravasi, T., Sweet, M. J. & Hume, D. A. Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J. Immunol. 178, 6557–6566 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Abdelmagid, S. M. et al. Osteoactivin, an anabolic factor that regulates osteoblast differentiation and function. Exp. Cell Res. 314, 2334–2351 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Frara, N. et al. Transgenic expression of Osteoactivin/gpnmb enhances bone formation in vivo and osteoprogenitor differentiation ex vivo. J. Cell. Physiol. 231, 72–83 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, B. et al. The melanoma-associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair. FASEB J. 24, 4767–4781 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakano, Y. et al. Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel neuroprotective factor in cerebral ischemia-reperfusion injury. Neuroscience 277, 123–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Neal, M. L., Boyle, A. M., Budge, K. M., Safadi, F. F. & Richardson, J. R. The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor. J. Neuroinflamm. 15, 73 (2018).

    Article  CAS  Google Scholar 

  20. Abe, H. et al. Transgenic expression of osteoactivin in the liver attenuates hepatic fibrosis in rats. Biochem. Biophys. Res. Commun. 356, 610–615 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Ogawa, T. et al. Osteoactivin upregulates expression of MMP-3 and MMP-9 in fibroblasts infiltrated into denervated skeletal muscle in mice. Am. J. Physiol. Cell Physiol. 289, C697–C707 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Chung, J. S., Sato, K., Dougherty, I. I., Cruz, P. D. Jr. & Ariizumi, K. DC-HIL is a negative regulator of T lymphocyte activation. Blood 109, 4320–4327 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kobayashi, M. et al. Blocking monocytic myeloid-derived suppressor cell function via Anti-DC-HIL/GPNMB antibody restores the in vitro integrity of t cells from cancer patients. Clin. Cancer Res. 25, 828–838 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Maric, G. et al. GPNMB augments Wnt-1 mediated breast tumor initiation and growth by enhancing PI3K/AKT/mTOR pathway signaling and beta-catenin activity. Oncogene 38, 5294–5307 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Maric, G., Rose, A. A., Annis, M. G. & Siegel, P. M. Glycoprotein non-metastatic b (GPNMB): a metastatic mediator and emerging therapeutic target in cancer. OncoTargets Ther. 6, 839–852 (2013).

    CAS  Google Scholar 

  26. Ott, P. A. et al. A phase 2 study of glembatumumab vedotin, an antibody-drug conjugate targeting glycoprotein NMB, in patients with advanced melanoma. Cancer 125, 1113–1123 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Raggi, C. et al. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. J. Hepatol. 66, 102–115 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Rose, A. A. et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin. Cancer Res. 16, 2147–2156 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Fiorentini, C. et al. GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity. Exp. Cell Res. 323, 100–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Truong, D. D. et al. A human organotypic microfluidic tumor model permits investigation of the interplay between patient-derived fibroblasts and breast cancer cells. Cancer Res. 79, 3139–3151 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Germano, G. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 23, 249–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Kauffmann, A., Gentleman, R. & Huber, W. arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anderson, M. G. et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat. Genet. 30, 81–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Zadra, G., Batista, J. L. & Loda, M. Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol. Cancer Res. 13, 1059–1072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel, A., Sabbineni, H., Clarke, A. & Somanath, P. R. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci. 157, 52–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu, H. et al. Osteoactivin inhibits dexamethasone-induced osteoporosis through up-regulating integrin β1 and activate ERK pathway. Biomed. Pharmacother. 105, 66–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Moussa, F. M. et al. Osteoactivin promotes osteoblast adhesion through HSPG and αvβ1 integrin. J. Cell. Biochem. 115, 1243–1253 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Sondag, G. R. et al. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling. Exp. Mol. Med. 48, e257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu, B., Sondag, G. R., Malcuit, C., Kim, M. H. & Safadi, F. F. Macrophage-associated Osteoactivin/GPNMB mediates mesenchymal stem cell survival, proliferation, and migration via a CD44-dependent mechanism. J. Cell Biochem. 117, 1511–1521 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Maric, G. et al. GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin alpha5beta1 for efficient breast cancer metastasis. Oncogene 34, 5494–5504 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Furochi, H. et al. Osteoactivin fragments produced by ectodomain shedding induce MMP-3 expression via ERK pathway in mouse NIH-3T3 fibroblasts. FEBS Lett. 581, 5743–5750 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Bhattacharyya, S., Feferman, L. & Tobacman, J. K. Inhibition of phosphatase activity follows decline in sulfatase activity and leads to transcriptional effects through sustained phosphorylation of transcription factor MITF. PLoS ONE 11, e0153463 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mezzapelle, R. et al. Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells. Sci. Rep. 6, 22850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ge, Y. & Fuchs, E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat. Rev. Genet. 19, 311–325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bolli, E., Movahedi, K., Laoui, D. & Van Ginderachter, J. A. Novel insights in the regulation and function of macrophages in the tumor microenvironment. Curr. Opin. Oncol. 29, 55–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Sica, A., Porta, C., Amadori, A. & Pasto, A. Tumor-associated myeloid cells as guiding forces of cancer cell stemness. Cancer Immunol. Immunother. 66, 1025–1036 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Jinushi, M. et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc. Natl Acad. Sci. USA 108, 12425–12430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu, H. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16, 1105–1117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hardie, D. G. AMPK—Sensing energy while talking to other signaling pathways. Cell Metab. 20, 939–952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qiao, M., Sheng, S. & Pardee, A. B. Metastasis and AKT activation. Cell Cycle 7, 2991–2996 (2014).

    Article  Google Scholar 

  55. Choi, K. & Kim Park, L. Targeting heat shock protein 27 in cancer: a druggable target for cancer treatment? Cancers 11, 1195 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  56. Wang, L., Zuo, X., Xie, K. & Wei, D. The role of CD44 and cancer. Stem Cells 1692, 31–42 (2018).

    CAS  Google Scholar 

  57. Abdelmagid, S. M. et al. Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro. Am. J. Pathol. 184, 697–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rose, A. A. et al. Osteoactivin promotes breast cancer metastasis to bone. Mol. Cancer Res. 5, 1001–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, C. et al. Glycoprotein nmb Is exposed on the surface of dormant breast cancer cells and induces stem cell-like properties. Cancer Res. 78, 6424–6435 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Cayrol, C. & Girard, J. P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 31, 31–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Liew, F. Y., Girard, J. P. & Turnquist, H. R. Interleukin-33 in health and disease. Nat. Rev. Immunol. 16, 676–689 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi, Y. S. et al. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood 114, 3117–3126 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Kenswil, K. J. G. et al. Characterization of endothelial cells associated with hematopoietic niche formation in humans identifies IL-33 As an anabolic factor. Cell Rep. 22, 666–678 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Afferni, C. et al. The pleiotropic immunomodulatory functions of IL-33 and its implications in tumor immunity. Front. Immunol. 9, 2601 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Shen, J. X., Liu, J. & Zhang, G. J. Interleukin-33 in malignancies: friends or foes? Front. Immunol. 9, 3051 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fang, M. et al. IL33 promotes colon cancer cell stemness via JNK activation and macrophage recruitment. Cancer Res. 77, 2735–2745 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu, H. et al. IL-33 facilitates endocrine resistance of breast cancer by inducing cancer stem cell properties. Biochem. Biophys. Res. Commun. 485, 643–650 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Xie, C. et al. Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway. J. Exp. Clin. Cancer Res. 38, 39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mager, L. F. et al. IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. J. Clin. Investig. 125, 2579–2591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang, Y., Richter, L., Becker, M., Amador, C. & Hyde, R. K. IL1RL1 is dynamically expressed on Cbfb-MYH11(+) leukemia stem cells and promotes cell survival. Sci. Rep. 9, 1729 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by IG grants from the Italian Association for Cancer Research (AIRC) to P.A. and grants from the Italian Ministry of Health (GR-2013-02356521) to E.M.B. In addition, E.D. is a recipient of a fellowship from AIRC. We thank Fabio Pasqualini for his help in immunohistochemistry experiments and Marina Sironi and Roberta Migliore for their contributions to the in vivo experiments.

Author information

Authors and Affiliations

Authors

Contributions

Supervising, researching and designing the study and writing the manuscript: C.B., P.A.; performing in vitro experiments and acquiring data: C.B., M.L., E.D., A.V., F.S.C., V.R., N.P., E.E., M.T., F.M.F.; performing phosphoproteomic assays and protein profiling: E.M.B., S.M., A.C.; performing in vivo experiment and acquiring data: C.B., R.A., E.D., M.L.; performing immunohistochemistry experiments: E.D., M.L.; performing gene expression analysis: L.M., I.C., S.M.; analyzing and interpreting data (e.g., statistical analysis, figures): E.D., C.B.

Corresponding authors

Correspondence to P. Allavena or C. Belgiovine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liguori, M., Digifico, E., Vacchini, A. et al. The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol 18, 711–722 (2021). https://doi.org/10.1038/s41423-020-0501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0501-0

Keywords

This article is cited by

Search

Quick links