Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CFTR is a negative regulator of γδ T cell IFN-γ production and antitumor immunity

Abstract

CFTR, a chloride channel and ion channel regulator studied mostly in epithelial cells, has been reported to participate in immune regulation and likely affect the risk of cancer development. However, little is known about the effects of CFTR on the differentiation and function of γδ T cells. In this study, we observed that CFTR was functionally expressed on the cell surface of γδ T cells. Genetic deletion and pharmacological inhibition of CFTR both increased IFN-γ release by peripheral γδ T cells and potentiated the cytolytic activity of these cells against tumor cells both in vitro and in vivo. Interestingly, the molecular mechanisms underlying the regulation of γδ T cell IFN-γ production by CFTR were either TCR dependent or related to Ca2+ influx. CFTR was recruited to TCR immunological synapses and attenuated Lck-P38 MAPK-c-Jun signaling. In addition, CFTR was found to modulate TCR-induced Ca2+ influx and membrane potential (Vm)-induced Ca2+ influx and subsequently regulate the calcineurin-NFATc1 signaling pathway in γδ T cells. Thus, CFTR serves as a negative regulator of IFN-γ production in γδ T cells and the function of these cells in antitumor immunity. Our investigation suggests that modification of the CFTR activity of γδ T cells may be a potential immunotherapeutic strategy for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cahalan, M. D. & Chandy, K. G. The functional network of ion channels in T lymphocytes. Immunol. Rev. 231, 59–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cai, X., Wang, X., Patel, S. & Clapham, D. E. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium 57, 166–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Feske, S., Concepcion, A. R. & Coetzee, W. A. Eye on ion channels in immune cells. Sci. Signal. 12, 572 (2019).

    Article  Google Scholar 

  5. Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Feske, S., Skolnik, E. Y. & Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 12, 532–547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaw, P. J., Qu, B., Hoth, M. & Feske, S. Molecular regulation of CRAC channels and their role in lymphocyte function. Cell. Mol. Life Sci. 70, 2637–2656 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Maul-Pavicic, A. et al. ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc. Natl Acad. Sci. USA 108, 3324–3329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shaw, P. J. & Feske, S. Regulation of lymphocyte function by ORAI and STIM proteins in infection and autoimmunity. J. Physiol. 590, 4157–4167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, F. Y. et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475, 471–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chandy, K. G., DeCoursey, T. E., Cahalan, M. D., McLaughlin, C. & Gupta, S. Voltage-gated potassium channels are required for human T lymphocyte activation. J. Exp. Med. 160, 369–385 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. DeCoursey, T. E., Chandy, K. G., Gupta, S. & Cahalan, M. D. Voltage-dependent ion channels in T-lymphocytes. J. Neuroimmunol. 10, 71–95 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Chimote, A. A. et al. A defect in KCa3.1 channel activity limits the ability of CD8(+) T cells from cancer patients to infiltrate an adenosine-rich microenvironment. Sci. Signal. 11, 527 (2018).

    Article  CAS  Google Scholar 

  16. Crottes, D. et al. Immature human dendritic cells enhance their migration through KCa3.1 channel activation. Cell Calcium 59, 198–207 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Kuras, Z., Yun, Y. H., Chimote, A. A., Neumeier, L. & Conforti, L. KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PloS ONE 7, e43859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J. H., Schulman, H. & Gardner, P. A cAMP-regulated chloride channel in lymphocytes that is affected in cystic fibrosis. Science 243, 657–660 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Shah, V. S. et al. Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351, 503–507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pankow, S. et al. F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528, 510–516 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duan, Y. et al. Keratin K18 increases cystic fibrosis transmembrane conductance regulator (CFTR) surface expression by binding to its C-terminal hydrophobic patch. J. Biol. Chem. 287, 40547–40559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feske, S., Wulff, H. & Skolnik, E. Y. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33, 291–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puga Molina, L. C. et al. CFTR/ENaC-dependent regulation of membrane potential during human sperm capacitation is initiated by bicarbonate uptake through NBC. J. Biol. Chem. 293, 9924–9936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei, L. et al. The C-terminal part of the R-domain, but not the PDZ binding motif, of CFTR is involved in interaction with Ca(2+)-activated Cl- channels. Pflug. Arch. 442, 280–285 (2001).

    Article  CAS  Google Scholar 

  26. Ogura, T. et al. ClC-3B, a novel ClC-3 splicing variant that interacts with EBP50 and facilitates expression of CFTR-regulated ORCC. FASEB J. 16, 863–865 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Welling, P. A. & Ho, K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am. J. Physiol. Ren. Physiol. 297, F849–F863 (2009).

    Article  CAS  Google Scholar 

  28. Mueller, C. et al. Lack of cystic fibrosis transmembrane conductance regulator in CD3+ lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses. Am. J. Respir. Cell Mol. Biol. 44, 922–929 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Allard, J. B. et al. Aspergillus fumigatus generates an enhanced Th2-biased immune response in mice with defective cystic fibrosis transmembrane conductance regulator. J. Immunol. 177, 5186–5194 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Dorsey, J. & Gonska, T. Bacterial overgrowth, dysbiosis, inflammation, and dysmotility in the Cystic Fibrosis intestine. J. Cyst. Fibros. 16(Suppl 2), S14–S23 (2017).

    Article  PubMed  Google Scholar 

  31. Riquelme, S. A. et al. Cystic fibrosis transmembrane conductance regulator attaches tumor suppressor PTEN to the membrane and promotes anti pseudomonas aeruginosa immunity. Immunity 47, 1169–81 e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holderness, J., Hedges, J. F., Ramstead, A. & Jutila, M. A. Comparative biology of gammadelta T cell function in humans, mice, and domestic animals. Annu. Rev. Anim. Biosci. 1, 99–124 (2013).

    Article  PubMed  CAS  Google Scholar 

  33. Chien, Y. H., Meyer, C. & Bonneville, M. gammadelta T cells: first line of defense and beyond. Annu. Rev. Immunol. 32, 121–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Serre, K. & Silva-Santos, B. Molecular mechanisms of differentiation of murine pro-inflammatory gammadelta T cell subsets. Front. Immunol. 4, 431 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sutton, C. E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Ferrick, D. A. et al. Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 373, 255–257 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Born, W. K., Yin, Z., Hahn, Y. S., Sun, D. & O’Brien, R. L. Analysis of gamma delta T cell functions in the mouse. J. Immunol. 184, 4055–4061 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Gao, Y. et al. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He, W. et al. Naturally activated V gamma 4 gamma delta T cells play a protective role in tumor immunity through expression of eomesodermin. J. Immunol. 185, 126–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, L. et al. Epigenetic and transcriptional programs lead to default IFN-gamma production by gammadelta T cells. J. Immunol. 178, 2730–2736 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lo Presti, E. et al. Current advances in gammadelta T cell-based tumor immunotherapy. Front. Immunol. 8, 1401 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Alnaggar, M. et al. Allogenic Vgamma9Vdelta2 T cell as new potential immunotherapy drug for solid tumor: a case study for cholangiocarcinoma. J. Immunother. Cancer 7, 36 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hayes, S. M., Shores, E. W. & Love, P. E. An architectural perspective on signaling by the pre-, alphabeta and gammadelta T cell receptors. Immunol. Rev. 191, 28–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Rigau, M. et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by gammadelta T cells. Science 367, eaay5516 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Bertin, S. et al. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4(+) T cells. Nat. Immunol. 15, 1055–1063 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guggino, W. B. & Stanton, B. A. New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat. Rev. Mol. Cell Biol. 7, 426–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15, 715–728 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Calabia-Linares, C. et al. Endosomal clathrin drives actin accumulation at the immunological synapse. J. Cell Sci. 124(Pt 5), 820–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Roncagalli, R. et al. Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub. Nat. Immunol. 15, 384–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chakraborty, A. K. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kouakanou, L. et al. Vitamin C promotes the proliferation and effector functions of human gammadelta T cells. Cell Mol. Immunol. 17, 462–473 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Carding, S. R. & Egan, P. J. Gammadelta T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Yin, Z. et al. Dominance of IL-12 over IL-4 in gamma delta T cell differentiation leads to default production of IFN-gamma: failure to down-regulate IL-12 receptor beta 2-chain expression. J. Immunol. 164, 3056–3064 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Yin, Z. et al. T-Bet expression and failure of GATA-3 cross-regulation lead to default production of IFN-gamma by gammadelta T cells. J. Immunol. 168, 1566–1571 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Sun, G. et al. gammadelta T cells provide the early source of IFN-gamma to aggravate lesions in spinal cord injury. J. Exp. Med. 215, 521–535 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, Q. et al. Roles of mTORC1 and mTORC2 in controlling gammadelta T1 and gammadelta T17 differentiation and function. Cell Death Differ. 27, 2248–2262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ponzetto, A., Holton, J. & Lucia, U. Cancer risk in patients with cystic fibrosis. Gastroenterology 154, 2282–2283 (2018).

    Article  PubMed  Google Scholar 

  58. Liu, M. et al. Treatment of human T-cell acute lymphoblastic leukemia cells with CFTR inhibitor CFTRinh-172. Leuk. Res. 86, 106225 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Yamada, A. et al. Risk of gastrointestinal cancers in patients with cystic fibrosis: a systematic review and meta-analysis. Lancet Oncol. 19, 758–767 (2018).

    Article  PubMed  Google Scholar 

  60. Abraham, J. M. & Taylor, C. J. Cystic fibrosis & disorders of the large intestine: DIOS, constipation, and colorectal cancer. J. Cyst. Fibros. 16(Suppl 2), S40–S49 (2017).

    Article  PubMed  Google Scholar 

  61. Cao, G. et al. mTOR inhibition potentiates cytotoxicity of Vgamma4 gammadelta T cells via up-regulating NKG2D and TNF-alpha. J. Leukoc. Biol. 100, 1181–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. McEwen, G. D. et al. Subcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy. Analyst 138, 787–797 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31420103901 to Z.Y., 31830021 to Z.Y., 31970830 to J.H., 81702876 to X.L., 31500734 to Y.D., and 31700753 to G.C.), grants from the Guangzhou Municipal Science and Technology Bureau (201904010090 to J.H. and 201906010085 to X.L.), and a grant from the Health Commission of Guangdong Province (A2019520 to J.H.).

Author information

Authors and Affiliations

Authors

Contributions

Y.D., G.L., and M.X. designed and performed experiments and data analysis. X.Q. and J.T. performed the patch clamp experiment and data analysis. Z.J., Q.Y., M.D., and Z.Lei helped with in vitro cell expansion. Y.H. performed the AFM experiment. Z.Li helped with data analysis and drawing of the proposed model. Z.Liu and Q.W. helped with animal breeding. X.L., G.C., W.K.Z., P.H., L.Z., and R.A.F. contributed to data analysis. Z.Y. and J.H. designed the research and wrote the manuscript.

Corresponding authors

Correspondence to Jianlei Hao or Zhinan Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Li, G., Xu, M. et al. CFTR is a negative regulator of γδ T cell IFN-γ production and antitumor immunity. Cell Mol Immunol 18, 1934–1944 (2021). https://doi.org/10.1038/s41423-020-0499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0499-3

Keywords

Search

Quick links