ACOD1 in immunometabolism and disease


Immunometabolism plays a fundamental role in health and diseases and involves multiple genes and signals. Aconitate decarboxylase 1 (ACOD1; also known as IRG1) is emerging as a regulator of immunometabolism in inflammation and infection. Upregulation of ACOD1 expression occurs in activated immune cells (e.g., macrophages and monocytes) in response to pathogen infection (e.g., bacteria and viruses), pathogen-associated molecular pattern molecules (e.g., LPS), cytokines (e.g., TNF and IFNs), and damage-associated molecular patterns (e.g., monosodium urate). Mechanistically, several immune receptors (e.g., TLRs and IFNAR), adapter proteins (e.g., MYD88), ubiquitin ligases (e.g., A20), and transcription factors (e.g., NF-κB, IRFs, and STATs) form complex signal transduction networks to control ACOD1 expression in a context-dependent manner. Functionally, ACOD1 mediates itaconate production, oxidative stress, and antigen processing and plays dual roles in immunity and diseases. On the one hand, activation of the ACOD1 pathway may limit pathogen infection and promote embryo implantation. On the other hand, abnormal ACOD1 expression can lead to tumor progression, neurodegenerative disease, and immune paralysis. Further understanding of the function and regulation of ACOD1 is important for the application of ACOD1-based therapeutic strategies in disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2


  1. 1.

    Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol Rev. 22, 240–273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  Google Scholar 

  3. 3.

    Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Mathis, D. & Shoelson, S. E. Immunometabolism: an emerging frontier. Nat. Rev. Immunol. 11, 81 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).

    CAS  PubMed  Google Scholar 

  7. 7.

    Cordes, T. et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 291, 14274–14284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Lee, C. G., Jenkins, N. A., Gilbert, D. J., Copeland, N. G. & O’Brien, W. E. Cloning and analysis of gene regulation of a novel LPS-inducible cDNA. Immunogenetics 41, 263–270 (1995).

    CAS  PubMed  Google Scholar 

  9. 9.

    Shi, S. et al. Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1. J. Immunol. 175, 3318–3328 (2005).

    CAS  PubMed  Google Scholar 

  10. 10.

    Hoshino, K., Kaisho, T., Iwabe, T., Takeuchi, O. & Akira, S. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Int Immunol. 14, 1225–1231 (2002).

    CAS  PubMed  Google Scholar 

  11. 11.

    Daniels, B. P. et al. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 50, 64–76. e64 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Dix, A. et al. Biomarker-based classification of bacterial and fungal whole-blood infections in a genome-wide expression study. Front. Microbiol. 6, 171 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Chen, B., Zhang, D. & Pollard, J. W. Progesterone regulation of the mammalian ortholog of methylcitrate dehydratase (immune response gene 1) in the uterine epithelium during implantation through the protein kinase C pathway. Mol. Endocrinol. 17, 2340–2354 (2003).

    CAS  PubMed  Google Scholar 

  14. 14.

    Degrandi, D., Hoffmann, R., Beuter-Gunia, C. & Pfeffer, K. The proinflammatory cytokine-induced IRG1 protein associates with mitochondria. J. Interferon Cytokine Res. 29, 55–67 (2009).

    CAS  PubMed  Google Scholar 

  15. 15.

    Dominguez-Andres, J. et al. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab. 29, 211–220. e215 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Hall, C. J. et al. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation-dependent mitochondrial ROS production. Cell Metab. 18, 265–278 (2013).

    CAS  PubMed  Google Scholar 

  17. 17.

    Pan, J. et al. Immune responsive gene 1, a novel oncogene, increases the growth and tumorigenicity of glioma. Oncol. Rep. 32, 1957–1966 (2014).

    CAS  PubMed  Google Scholar 

  18. 18.

    Cheon, Y. P., Xu, X., Bagchi, M. K. & Bagchi, I. C. Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse. Endocrinology 144, 5623–5630 (2003).

    CAS  PubMed  Google Scholar 

  19. 19.

    Li, H. et al. Different neurotropic pathogens elicit neurotoxic CCR9- or neurosupportive CXCR3-expressing microglia. J. Immunol. 177, 3644–3656 (2006).

    CAS  PubMed  Google Scholar 

  20. 20.

    Li, Y. et al. Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. J. Biol. Chem. 288, 16225–16234 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yin, S. et al. The IRG1-itaconate axis promotes viral replication via metabolic reprogramming and protein prenylation. Cell Metab. 19-00910, 54 (2019).

  23. 23.

    Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Medzhitov, R. & Janeway, C. Jr. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    CAS  PubMed  Google Scholar 

  25. 25.

    Xiao, W. et al. Expression profile of human immune-responsive gene 1 and generation and characterization of polyclonal antiserum. Mol. Cell Biochem. 353, 177–187 (2011).

    CAS  PubMed  Google Scholar 

  26. 26.

    Schmidt, G. & Richter, K. Expression pattern of XIRG, a marker for non-neural ectoderm. Dev. Genes Evol. 210, 575–578 (2000).

    CAS  PubMed  Google Scholar 

  27. 27.

    Chen, F. et al. Crystal structure of cis-aconitate decarboxylase reveals the impact of naturally occurring human mutations on itaconate synthesis. Proc. Natl Acad. Sci. USA 116, 20644–20654 (2019).

    CAS  PubMed  Google Scholar 

  28. 28.

    Naujoks, J. et al. IFNs modify the proteome of legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. PLoS Pathog. 12, e1005408 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kim, Y. J. et al. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages. PLoS ONE 10, e0120840 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kim, J. Y. et al. Radioprotective effect of newly synthesized toll-like receptor 5 agonist, KMRC011, in mice exposed to total-body irradiation. J. Radiat. Res. 60, 432–441 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kong, F. et al. Transcriptional profiling in experimental visceral leishmaniasis reveals a broad splenic inflammatory environment that conditions macrophages toward a disease-promoting phenotype. PLoS Pathog. 13, e1006165 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sherwin, J. R. et al. Identification of genes regulated by leukemia-inhibitory factor in the mouse uterus at the time of implantation. Mol. Endocrinol. 18, 2185–2195 (2004).

    CAS  PubMed  Google Scholar 

  34. 34.

    Catalano, R. D. et al. Inhibition of Stat3 activation in the endometrium prevents implantation: a nonsteroidal approach to contraception. Proc. Natl Acad. Sci. USA 102, 8585–8590 (2005).

    CAS  PubMed  Google Scholar 

  35. 35.

    Terakawa, J. et al. Embryo implantation is blocked by intraperitoneal injection with anti-LIF antibody in mice. J. Reprod. Dev. 57, 700–707 (2011).

    CAS  PubMed  Google Scholar 

  36. 36.

    Cheon, Y. P. et al. A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol. Endocrinol. 16, 2853–2871 (2002).

    CAS  PubMed  Google Scholar 

  37. 37.

    Pessler, F. et al. Identification of novel monosodium urate crystal regulated mRNAs by transcript profiling of dissected murine air pouch membranes. Arthritis Res. Ther. 10, R64 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Jamal Uddin, M. et al. IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production. Cell Mol. Immunol. 13, 170–179 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Kane, M. J. et al. Altered gene expression in cultured microglia in response to simulated blast overpressure: possible role of pulse duration. Neurosci. Lett. 522, 47–51 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Basler, T., Jeckstadt, S., Valentin-Weigand, P. & Goethe, R. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages. J. Leukoc. Biol. 79, 628–638 (2006).

    CAS  PubMed  Google Scholar 

  41. 41.

    Papathanassiu, A. E. et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat. Commun. 8, 16040 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gonzalez-Pena, D. et al. Differential transcriptome networks between IDO1-knockout and wild-type mice in brain microglia and macrophages. PLoS ONE 11, e0157727 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Munn, D. H. & Mellor, A. L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34, 137–143 (2013).

    CAS  PubMed  Google Scholar 

  44. 44.

    Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894 (2001).

    CAS  PubMed  Google Scholar 

  45. 45.

    Wei, S. et al. Overexpression of Toll-like receptor 4 enhances LPS-induced inflammatory response and inhibits Salmonella Typhimurium growth in ovine macrophages. Eur. J. Cell Biol. 98, 36–50 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Rodriguez, N. et al. MyD88-dependent changes in the pulmonary transcriptome after infection with Chlamydia pneumoniae. Physiol. Genom. 30, 134–145 (2007).

    CAS  Google Scholar 

  47. 47.

    Zhao, G. N., Jiang, D. S. & Li, H. Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim. Biophys. Acta 1852, 365–378 (2015).

    CAS  PubMed  Google Scholar 

  48. 48.

    Tangsudjai, S. et al. Involvement of the MyD88-independent pathway in controlling the intracellular fate of Burkholderia pseudomallei infection in the mouse macrophage cell line RAW 264.7. Microbiol. Immunol. 54, 282–290 (2010).

    CAS  PubMed  Google Scholar 

  49. 49.

    Ganta, V. C. et al. A MicroRNA93-interferon regulatory factor-9-immunoresponsive gene-1-itaconic acid pathway modulates M2-like macrophage polarization to revascularize ischemic muscle. Circulation. 135, 2403–2425 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Tallam, A. et al. Gene regulatory network inference of immunoresponsive gene 1 (IRG1) identifies interferon regulatory factor 1 (IRF1) as its transcriptional regulator in mammalian macrophages. PLoS ONE 11, e0149050 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Opipari, A. W. Jr., Boguski, M. S. & Dixit, V. M. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J. Biol. Chem. 265, 14705–14708 (1990).

    CAS  PubMed  Google Scholar 

  52. 52.

    Jaattela, M., Mouritzen, H., Elling, F. & Bastholm, L. A20 zinc finger protein inhibits TNF and IL-1 signaling. J. Immunol. 156, 1166–1173 (1996).

    CAS  PubMed  Google Scholar 

  53. 53.

    Van Quickelberghe, E. et al. Identification of immune-responsive gene 1 (IRG1) as a target of A20. J. Proteome Res. 17, 2182–2191 (2018).

    PubMed  Google Scholar 

  54. 54.

    Newton, A. C. Protein kinase C: structure, function, and regulation. J. Biol. Chem. 270, 28495–28498 (1995).

    CAS  PubMed  Google Scholar 

  55. 55.

    Konishi, H. et al. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc. Natl Acad. Sci. USA 94, 11233–11237 (1997).

    CAS  PubMed  Google Scholar 

  56. 56.

    Aronoff, D. M., Canetti, C., Serezani, C. H., Luo, M. & Peters-Golden, M. Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J. Immunol. 174, 595–599 (2005).

    CAS  PubMed  Google Scholar 

  57. 57.

    Hanada, T. & Yoshimura, A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 13, 413–421 (2002).

    CAS  PubMed  Google Scholar 

  58. 58.

    Day, D. A. & Tuite, M. F. Post-transcriptional gene regulatory mechanisms in eukaryotes: an overview. J. Endocrinol. 157, 361–371 (1998).

    CAS  PubMed  Google Scholar 

  59. 59.

    Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    CAS  PubMed  Google Scholar 

  60. 60.

    Shi, H. Z., Wang, D., Sun, X. N. & Sheng, L. MicroRNA-378 acts as a prognosis marker and inhibits cell migration, invasion and epithelial-mesenchymal transition in human glioma by targeting IRG1. Eur. Rev. Med Pharmacol. Sci. 22, 3837–3846 (2018).

    PubMed  Google Scholar 

  61. 61.

    Kelly, B. & O’Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Lohkamp, B., Bauerle, B., Rieger, P. G. & Schneider, G. Three-dimensional structure of iminodisuccinate epimerase defines the fold of the MmgE/PrpD protein family. J. Mol. Biol. 362, 555–566 (2006).

    CAS  PubMed  Google Scholar 

  64. 64.

    Strelko, C. L. et al. Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133, 16386–16389 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Shin, J. H. et al. (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J. Proteome Res. 10, 2238–2247 (2011).

    CAS  PubMed  Google Scholar 

  66. 66.

    Kobayashi, A. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell Biol. 24, 7130–7139 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Bambouskova, M. et al. Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature 556, 501–504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ahmed, S. M., Luo, L., Namani, A., Wang, X. J. & Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 585–597 (2017).

    CAS  PubMed  Google Scholar 

  69. 69.

    Yi, Z. et al. IRG1/Itaconate activates Nrf2 in hepatocytes to protect against liver ischemia-reperfusion injury. Hepatology. (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Liao, S. T. et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat. Commun. 10, 5091 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470. e413 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Ackermann, W. W. & Potter, V. R. Enzyme inhibition in relation to chemotherapy. Proc. Soc. Exp. Biol. Med. 72, 1–9 (1949).

    CAS  PubMed  Google Scholar 

  75. 75.

    Nemeth, B. et al. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB J. 30, 286–300 (2016).

    CAS  PubMed  Google Scholar 

  76. 76.

    Ahn, S., Jung, J., Jang, I. A., Madsen, E. L. & Park, W. Role of glyoxylate shunt in oxidative stress response. J. Biol. Chem. 291, 11928–11938 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Palsuledesai, C. C. & Distefano, M. D. Protein prenylation: enzymes, therapeutics, and biotechnology applications. ACS Chem. Biol. 10, 51–62 (2015).

    CAS  PubMed  Google Scholar 

  78. 78.

    Einav, S. & Glenn, J. S. Prenylation inhibitors: a novel class of antiviral agents. J. Antimicrob. Chemother. 52, 883–886 (2003).

    CAS  PubMed  Google Scholar 

  79. 79.

    Liu, Y. et al. N (6)-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science 365, 1171–1176 (2019).

    CAS  PubMed  Google Scholar 

  80. 80.

    Alfadda, A. A. & Sallam, R. M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012, 936486 (2012).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Paiva, C. N. & Bozza, M. T. Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox Signal. 20, 1000–1037 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Liu, X., Wu, X. P., Zhu, X. L., Li, T. & Liu, Y. IRG1 increases MHC class I level in macrophages through STAT-TAP1 axis depending on NADPH oxidase mediated reactive oxygen species. Int. Immunopharmacol. 48, 76–83 (2017).

    CAS  PubMed  Google Scholar 

  83. 83.

    West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol 7, 99–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    CAS  PubMed  Google Scholar 

  86. 86.

    Hewitt, E. W. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163–169 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Ackerman, A. L. & Cresswell, P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol. 5, 678–684 (2004).

    CAS  PubMed  Google Scholar 

  88. 88.

    Liu, X. et al. Polymorphisms in IRG1 gene associated with immune responses to hepatitis B vaccination in a Chinese Han population and function to restrain the HBV life cycle. J. Med. Virol. 89, 1215–1223 (2017).

    CAS  PubMed  Google Scholar 

  89. 89.

    Smith, J. et al. Systems analysis of immune responses in Marek’s disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism. J. Virol. 85, 11146–11158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Gautam, A. et al. Interleukin-10 alters effector functions of multiple genes induced by Borrelia burgdorferi in macrophages to regulate Lyme disease inflammation. Infect. Immun. 79, 4876–4892 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Nair, S. et al. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J. Exp. Med. 215, 1035–1045 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Cho, H. et al. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat. Med. 19, 458–464 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Ren, K. et al. Suppression of IRG-1 reduces inflammatory cell infiltration and lung injury in respiratory syncytial virus infection by reducing production of reactive oxygen species. J. Virol. 90, 7313–7322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    McNeal, S. et al. Association of immunosuppression with DR6 expression during the development and progression of spontaneous ovarian cancer in Laying Hen model. J. Immunol. Res 2016, 6729379 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Weiss, J. M. et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Investig 128, 3794–3805 (2018).

    PubMed  Google Scholar 

  96. 96.

    Fischer, C. et al. Bisphenol A (BPA) exposure in utero leads to immunoregulatory cytokine dysregulation in the mouse mammary gland: a potential mechanism programming breast cancer risk. Horm. Cancer 7, 241–251 (2016).

    CAS  PubMed  Google Scholar 

  97. 97.

    Perry, V. H. & Teeling, J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 35, 601–612 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Duffy, C. M., Hofmeister, J. J., Nixon, J. P. & Butterick, T. A. High fat diet increases cognitive decline and neuroinflammation in a model of orexin loss. Neurobiol. Learn Mem. 157, 41–47 (2019).

    CAS  PubMed  Google Scholar 

  99. 99.

    Mor, G., Cardenas, I., Abrahams, V. & Guller, S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 1221, 80–87 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Paria, B. C., Huet-Hudson, Y. M. & Dey, S. K. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc. Natl Acad. Sci. USA 90, 10159–10162 (1993).

    CAS  PubMed  Google Scholar 

  101. 101.

    Salleh, N. & Giribabu, N. Leukemia inhibitory factor: roles in embryo implantation and in nonhormonal contraception. ScientificWorldJournal 2014, 201514 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Matulova, M. et al. Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar enteritidis. PLoS ONE 7, e48101 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Matulova, M. et al. Chicken innate immune response to oral infection with Salmonella enterica serovar enteritidis. Vet. Res. 44, 37 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Rychlik, I., Elsheimer-Matulova, M. & Kyrova, K. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella. Vet. Res. 45, 119 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Preusse, M., Tantawy, M. A., Klawonn, F., Schughart, K. & Pessler, F. Infection- and procedure-dependent effects on pulmonary gene expression in the early phase of influenza A virus infection in mice. BMC Microbiol. 13, 293 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references


We thank Dave Primm (Department of Surgery, University of Texas Southwestern Medical Center) for his critical reading of the manuscript.

Author information



Corresponding authors

Correspondence to Daolin Tang or Rui Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Chen, F., Wang, N. et al. ACOD1 in immunometabolism and disease. Cell Mol Immunol 17, 822–833 (2020).

Download citation

Key words

  • ACOD1
  • immunometabolism
  • disease