Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The essential functions of mitochondrial dynamics in immune cells

Abstract

Mitochondria are highly mobile organelles due to fission, fusion, transport, and mitophagy, and these processes are known as mitochondrial dynamics. Mitochondrial dynamics play an important role in energy production, cell division, cell differentiation, and cell death. In the past decade, numerous studies have revealed the importance of mitochondrial metabolism in immunity, and mitochondrial dynamics are essential for immune responses mediated by various cell types. In this review, we mainly discuss the role of mitochondrial dynamics in activation, differentiation, cytokine production, and the activity of related pathways in immune cells, particularly T cells, B cells, and other cells involved in the innate immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altieri, D. C. Mitochondrial dynamics and metastasis. Cell. Mol. Life Sci. 76, 827–835 (2019).

    CAS  PubMed  Google Scholar 

  2. Mohanty, A., Tiwari-Pandey, R. & Pandey, N. R. Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J. Cell Commun. Signal. 13, 303–318 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. El-Hattab, A. W., Suleiman, J., Almannai, M. & Scaglia, F. Mitochondrial dynamics: Biological roles, molecular machinery, and related diseases. Mol. Genet. Metab. 125, 315–321 (2018).

    CAS  PubMed  Google Scholar 

  4. Mishra, P. Interfaces between mitochondrial dynamics and disease. Cell Calcium 60, 190–198 (2016).

    CAS  PubMed  Google Scholar 

  5. Rambold, A. S. & Pearce, E. L. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 39, 6–18 (2018).

    CAS  PubMed  Google Scholar 

  6. Baixauli, F. et al. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. EMBO J. 30, 1238–1250 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kang, Y. J. et al. Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling. Nat. Commun. 6, 8371 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zemirli, N., Morel, E. & Molino, D. Mitochondrial dynamics in basal and stressful conditions. Int. J. Mol. Sci. 19, 564 (2018).

    PubMed Central  Google Scholar 

  9. Bulthuis, E. P., Adjobo-Hermans, M. J. W., Willems, P. & Koopman, W. J. H. Mitochondrial morphofunction in mammalian cells. Antioxid. Redox Signal 30, 2066–2109 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gal, A. et al. MSTO 1 is a cytoplasmic pro‐mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans. EMBO Mol. Med. 9, 967–984 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoppins, S. The regulation of mitochondrial dynamics. Curr. Opin. Cell Biol. 29, 46–52 (2014).

    CAS  PubMed  Google Scholar 

  12. Del Dotto, V., Fogazza, M., Carelli, V., Rugolo, M. & Zanna, C. Eight human OPA1 isoforms, long and short: What are they for? Biochim Biophys. Acta Bioenerg. 1859, 263–269 (2018).

    PubMed  Google Scholar 

  13. Anand, R. et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204, 919–929 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    CAS  PubMed  Google Scholar 

  15. Patten, D. A. et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 33, 2676–2691 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. 15, 235–259 (2019).

    PubMed  Google Scholar 

  17. Cho, B. et al. CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Exp. Mol. Med 46, e105 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakamura, N., Kimura, Y., Tokuda, M., Honda, S. & Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7, 1019–1022 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gawlowski, T. et al. Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-β-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J. Biol. Chem. 287, 30024–30034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Oliver, D. & Reddy, P. H. Dynamics of dynamin-related protein 1 in alzheimer’s disease and other neurodegenerative diseases. Cells. 8, 961 (2019).

    CAS  PubMed Central  Google Scholar 

  21. Simula, L., Campanella, M. & Campello, S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacol. Res. 146, 8 (2019).

    Google Scholar 

  22. Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Quintana, A. & Hoth, M. Mitochondrial dynamics and their impact on T cell function. Cell Calcium 52, 57–63 (2012).

    CAS  PubMed  Google Scholar 

  24. Saxton, W. M. & Hollenbeck, P. J. The axonal transport of mitochondria. J. Cell Sci. 125, 2095–2104 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016).

    CAS  PubMed  Google Scholar 

  27. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Palikaras, K., Lionaki, E. & Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20, 1013–1022 (2018).

    CAS  PubMed  Google Scholar 

  29. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Weinberg, S. E., Sena, L. A. & Chandel, N. S. Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406–417 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, R. & Green, D. R. Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev. 249, 14–26 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Buck, M. D., O’Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Klarquist, J., et al. Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Sci. Immunol. 3, eaas9882 (2018).

    Google Scholar 

  35. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Field, C. S. et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for treg suppressive function. Cell Metab. 31, 422–437 e425 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan, H. et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46, 488–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8(+) T cells. Immunity 51, 856–870 e855 (2019).

    CAS  PubMed  Google Scholar 

  39. Schwindling, C., Quintana, A., Krause, E. & Hoth, M. Mitochondria positioning controls local calcium influx in T cells. J. Immunol. 184, 184–190 (2010).

    CAS  PubMed  Google Scholar 

  40. Quintana, A. et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl Acad. Sci. USA 104, 14418–14423 (2007).

    CAS  PubMed  Google Scholar 

  41. Roth, D., Krammer, P. H. & Gulow, K. Dynamin related protein 1-dependent mitochondrial fission regulates oxidative signalling in T cells. FEBS Lett. 588, 1749–1754 (2014).

    CAS  PubMed  Google Scholar 

  42. Krueger, A., Fas, S. C., Baumann, S. & Krammer, P. H. The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunological Rev. 193, 58–69 (2003).

    CAS  Google Scholar 

  43. Serfling, E., Avots, A. & Neumann, M. The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. Biochimica et. Biophys. Acta 1263, 181–200 (1995).

    Google Scholar 

  44. Li-Weber, M., Laur, O., Dern, K. & Krammer, P. H. T cell activation-induced and HIV tat-enhanced CD95(APO-1/Fas) ligand transcription involves NF-kappaB. Eur. J. Immunol. 30, 661–670 (2000).

    CAS  PubMed  Google Scholar 

  45. Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).

    PubMed  Google Scholar 

  46. Yu, T., Robotham, J. L. & Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl Acad. Sci. USA 103, 2653–2658 (2006).

    CAS  PubMed  Google Scholar 

  47. Cho, D.-H. et al. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Sci. (N. Y.) 324, 102–105 (2009).

    CAS  Google Scholar 

  48. Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Klein Geltink, R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397 e311 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Simula, L. et al. Drp1 controls effective t cell immune-surveillance by regulating t cell migration, proliferation, and cMyc-dependent metabolic reprogramming. Cell Rep. 25, 3059–3073 e3010 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao, G.-j et al. Up-regulation of mitofusin-2 protects CD4+ T cells from HMGB1-mediated immune dysfunction partly through Ca(2+)-NFAT signaling pathway. Cytokine 59, 79–85 (2012).

    CAS  PubMed  Google Scholar 

  52. Caza, T. N. et al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann. Rheum. Dis. 73, 1888–1897 (2014).

    CAS  PubMed  Google Scholar 

  53. Burté, F., Carelli, V., Chinnery, P. F. & Yu-Wai-Man, P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24 (2015).

    PubMed  Google Scholar 

  54. Fan, K. Q. et al. Stress-induced metabolic disorder in peripheral CD4(+) T cells leads to anxiety-like behavior. Cell 179, 864–879 e819 (2019).

    CAS  PubMed  Google Scholar 

  55. Hoffman, W., Lakkis, F. G. & Chalasani, G. B cells, antibodies, and more. Clin. J. Am. Soc. Nephrology: CJASN 11, 137–154 (2016).

    CAS  Google Scholar 

  56. Stein, M. et al. A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1. Cell Death Differ. 24, 1239–1252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Melchers, F. Checkpoints that control B cell development. J. Clin. Investig. 125, 2203–2210 (2015).

    PubMed  Google Scholar 

  58. Sandoval, H., Kodali, S. & Wang, J. Regulation of B cell fate, survival, and function by mitochondria and autophagy. Mitochondrion 41, 58–65 (2018).

    CAS  PubMed  Google Scholar 

  59. Boothby, M. & Rickert, R. C. Metabolic regulation of the immune humoral response. Immunity 46, 743–755 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jin, G. et al. Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nat. Immunol. 19, 29–40 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105–117 (2016).

    CAS  PubMed  Google Scholar 

  62. Esteban-Martínez, L. et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J. 36, 1688–1706 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Zhang, Y. et al. Mitoguardin regulates mitochondrial fusion through mitopld and is required for neuronal homeostasis. Mol. Cell. 61, 111–124 (2016).

    CAS  PubMed  Google Scholar 

  64. Gao, Z. et al. Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability. Nat. Commun. 8, 1805 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Kano, S. et al. The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4+ T cells. Nat. Immunol. 9, 34–41 (2008).

    CAS  PubMed  Google Scholar 

  66. Narayan, V., Pion, E., Landré, V., Müller, P. & Ball, K. L. Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase CHIP. J. Biol. Chem. 286, 607–619 (2011).

    CAS  PubMed  Google Scholar 

  67. Yasukawa, K. et al. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci. Signal. 2, ra47 (2009).

    PubMed  Google Scholar 

  68. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Yue, L. & Yao, H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br. J. Pharm. 173, 2305–2318 (2016).

    CAS  Google Scholar 

  70. Kwon, D., Park, E. & Kang, S. J. Stimulator of IFN genes-mediated DNA-sensing pathway is suppressed by NLRP3 agonists and regulated by mitofusin 1 and TBC1D15, mitochondrial dynamics mediators. FASEB J. 31, 4866–4878 (2017).

    CAS  PubMed  Google Scholar 

  71. Gkikas, I., Palikaras, K. & Tavernarakis, N. The role of mitophagy in innate immunity. Front. Immun. 9, 1283 (2018).

    Google Scholar 

  72. Bauernfeind, F. et al. Inflammasomes: current understanding and open questions. Cell Mol. Life Sci. 68, 765–783 (2011).

    CAS  PubMed  Google Scholar 

  73. Kelley, N., Jeltema, D., Duan, Y. & He, Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 20, 3328 (2019).

    CAS  PubMed Central  Google Scholar 

  74. Ichinohe, T., Yamazaki, T., Koshiba, T. & Yanagi, Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl Acad. Sci. USA 110, 17963–17968 (2013).

    CAS  PubMed  Google Scholar 

  75. Subramanian, N., Natarajan, K., Clatworthy, M. R., Wang, Z. & Germain, R. N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153, 348–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Park, S. et al. Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci. Rep. 5, 15489 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, X. et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat. Immunol. 15, 1126–1133 (2014).

    CAS  PubMed  Google Scholar 

  78. Kim, S. J., Ahn, D. G., Syed, G. H. & Siddiqui, A. The essential role of mitochondrial dynamics in antiviral immunity. Mitochondrion 41, 21–27 (2018).

    CAS  PubMed  Google Scholar 

  79. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    CAS  PubMed  Google Scholar 

  80. Zhong, Z. et al. NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896–910 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, S. et al. A novel mechanism of mesenchymal stromal cell-mediated protection against sepsis: restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS. Oxid. Med. Cell Longev. 2018, 3537609 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Lupfer, C. et al. Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection. Nat. Immunol. 14, 480–488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Sci. (N. Y.) 356, 513–519 (2017).

    CAS  Google Scholar 

  84. Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454–460 (2013).

    CAS  PubMed  Google Scholar 

  85. Wang, Y. et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331–345 e322 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, Y.-J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell. 106, 259–262 (2001).

    CAS  PubMed  Google Scholar 

  88. Basit, F., Mathan, T., Sancho, D. & de Vries, I. J. M. Human dendritic cell subsets undergo distinct metabolic reprogramming for immune response. Front Immunol. 9, 2489 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    CAS  PubMed  Google Scholar 

  90. Du, X. et al. Hippo/Mst signalling couples metabolic state and immune function of CD8alpha(+) dendritic cells. Nature 558, 141–145 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chang, C.-R. & Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583–21587 (2007).

    CAS  PubMed  Google Scholar 

  92. Cribbs, J. T. & Strack, S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939–944 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Godfrey, D. I., Stankovic, S. & Baxter, A. G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    CAS  PubMed  Google Scholar 

  94. López-Armada, M. J., Riveiro-Naveira, R. R., Vaamonde-García, C. & Valcárcel-Ares, M. N. Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13, 106–118 (2013).

    PubMed  Google Scholar 

  95. West, A. P. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology 391, 54–63 (2017).

    CAS  PubMed  Google Scholar 

  96. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Duroux-Richard, I. et al. miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood 128, 3125–3136 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tondera, D. et al. The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J. Cell Sci. 118, 3049–3059 (2005).

    CAS  PubMed  Google Scholar 

  99. Abarca-Rojano, E. et al. Re-organization of mitochondria at the NK cell immune synapse. Immunol. Lett. 122, 18–25 (2009).

    CAS  PubMed  Google Scholar 

  100. O’Sullivan, T. E., Johnson, L. R., Kang, H. H. & Sun, J. C. BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity 43, 331–342 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Zheng, X. et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. 20, 1656–1667 (2019).

    CAS  PubMed  Google Scholar 

  102. Angajala, A., et al. Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol. 9, 1605 (2018).

Download references

Acknowledgements

This review was supported by the Excellent Young Scientist Foundation of NSFC (grant No. 31822017), the Zhejiang Provincial Natural Science Foundation of China under grant no. LR19C080001, the National Natural Science Foundation of China (grant nos. 81572651 and 81771675), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

X.J. wrote the manuscript. J.J. and L.Y. revised the manuscript.

Corresponding authors

Correspondence to Yi-Yuan Li or Jin Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, JH., Li, YY. & Jin, J. The essential functions of mitochondrial dynamics in immune cells. Cell Mol Immunol 17, 712–721 (2020). https://doi.org/10.1038/s41423-020-0480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0480-1

Keywords

This article is cited by

Search

Quick links