Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells

Abstract

T cells react to foreign or self-antigens through T cell receptor (TCR) signaling. Several decades of research have delineated the mechanism of TCR signal transduction and its impact on T cell performance. This knowledge provides the foundation for chimeric antigen receptor T cell (CAR-T cell) technology, by which T cells are redirected in a major histocompatibility complex-unrestricted manner. TCR and CAR signaling plays a critical role in determining the T cell state, including exhaustion and memory. Given its artificial nature, CARs might affect or rewire signaling differently than TCRs. A better understanding of CAR signal transduction would greatly facilitate improvements to CAR-T cell technology and advance its usefulness in clinical practice. Herein, we systematically review the knowns and unknowns of TCR and CAR signaling, from the contact of receptors and antigens, proximal signaling, immunological synapse formation, and late signaling outcomes. Signaling through different T cell subtypes and how signaling is translated into practice are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267–1284 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanson, H. L. et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 13, 265–276 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kalams, S. A. & Walker, B. D. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J. Exp. Med. 188, 2199–2204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pardoll, D. M. & Topalian, S. L. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol. 10, 588–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Shankaran, V. et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Teng, M. W., Galon, J., Fridman, W. H. & Smyth, M. J. From mice to humans: developments in cancer immunoediting. J. Clin. Invest. 125, 3338–3346 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Becker, M. L. et al. Expression of a hybrid immunoglobulin-T cell receptor protein in transgenic mice. Cell 58, 911–921 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Goverman, J. et al. Chimeric immunoglobulin-T cell receptor proteins form functional receptors: implications for T cell receptor complex formation and activation. Cell 60, 929–939 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA 86, 10024–10028 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Gascoigne, N. R., Goodnow, C. C., Dudzik, K. I., Oi, V. T. & Davis, M. M. Secretion of a chimeric T-cell receptor-immunoglobulin protein. Proc. Natl. Acad. Sci. USA 84, 2936–2940 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Neuberger, M. S., Williams, G. T. & Fox, R. O. Recombinant antibodies possessing novel effector functions. Nature 312, 604–608 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Traunecker, A., Luke, W. & Karjalainen, K. Soluble CD4 molecules neutralize human immunodeficiency virus type 1. Nature 331, 84–86 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, D. H. et al. Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 238, 1704–1707 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Morrison, S. L., Johnson, M. J., Herzenberg, L. A. & Oi, V. T. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA 81, 6851–6855 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Bird, R. E. et al. Single-chain antigen-binding proteins. Science 242, 423–426 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Huston, J. S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Irving, B. A. & Weiss, A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Sadelain, M., Riviere, I. & Brentjens, R. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer 3, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hombach, A. et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 signaling receptor molecule. J. Immunol. 167, 6123–6131 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Davis, M. M. & Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kabelitz, D., Marischen, L., Oberg, H.-H., Holtmeier, W. & Wesch, D. Epithelial defence by γδ T cells. Int. Arch. Allergy Immunol. 137, 73–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Gao, G. F. & Jakobsen, B. K. Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor. Immunol. Today 21, 630–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Gao, G. F., Rao, Z. & Bell, J. I. Molecular coordination of αβ T-cell receptors and coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands. Trends Immunol. 23, 408–413 (2002).

    Article  PubMed  Google Scholar 

  31. Yachi, P. P., Ampudia, J., Gascoigne, N. R. & Zal, T. Nonstimulatory peptides contribute to antigen-induced CD8-T cell receptor interaction at the immunological synapse. Nat. Immunol. 6, 785–792 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, X. et al. Nonstimulatory peptide-MHC enhances human T-cell antigen-specific responses by amplifying proximal TCR signaling. Nat. Commun. 9, 2716 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–8000 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Nerreter, T. et al. Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nat. Commun. 10, 3137 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Brameshuber, M. et al. Monomeric TCRs drive T cell antigen recognition. Nat. Immunol. 19, 487–496 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Feng, Y., Reinherz, E. L. & Lang, M. J. alphabeta T cell receptor mechanosensing forces out serial engagement. Trends Immunol. 39, 596–609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tischer, D. K. & Weiner, O. D. Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling. eLife 8, e42498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Davis, S. J. & van der Merwe, P. A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Choudhuri, K. et al. Peptide-major histocompatibility complex dimensions control proximal kinase-phosphatase balance during T cell activation. J. Biol. Chem. 284, 26096–26105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cordoba, S. P. et al. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 121, 4295–4302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. James, J. R. & Vale, R. D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nika, K. et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32, 766–777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nel, A. E. T-cell activation through the antigen receptor. Part 1: signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J. Allergy Clin. Immunol. 109, 758–770 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Denny, M. F., Patai, B. & Straus, D. B. Differential T-cell antigen receptor signaling mediated by the Src family kinases Lck and Fyn. Mol. Cell. Biol. 20, 1426–1435 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Casas, J. et al. Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat. Commun. 5, 5624 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gascoigne, N. R., Casas, J., Brzostek, J. & Rybakin, V. Initiation of TCR phosphorylation and signal transduction. Front. Immunol. 2, 72 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jiang, N. et al. Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. Immunity 34, 13–23 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Samelson, L. E. Signal transduction edited by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Lo, W. L. et al. Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat. Immunol. 19, 733–741 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lesourne, R. et al. Themis, a T cell-specific protein important for late thymocyte development. Nat. Immunol. 10, 840–847 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Johnson, A. L. et al. Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nat. Immunol. 10, 831–839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fu, G. et al. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 504, 441–445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi, S. et al. THEMIS enhances TCR signaling and enables positive selection by selective inhibition of the phosphatase SHP-1. Nat. Immunol. 18, 433–441 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paster, W. et al. A THEMIS:SHP1 complex promotes T-cell survival. EMBO J. 34, 393–409 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Fu, G. et al. Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling. Nat. Immunol. 10, 848–856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, S. K., Fang, N., Koretzky, G. A. & McGlade, C. J. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Shim, E. K., Jung, S. H. & Lee, J. R. Role of two adaptor molecules SLP-76 and LAT in the PI3K signaling pathway in activated T cells. J. Immunol. 186, 2926–2935 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Bogin, Y., Ainey, C., Beach, D. & Yablonski, D. SLP-76 mediates and maintains activation of the Tec family kinase ITK via the T cell antigen receptor-induced association between SLP-76 and ITK. Proc. Natl. Acad. Sci. USA 104, 6638–6643 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Salter, A. I. et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci. Signal. 11, eaat6753 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Harris, D. T. et al. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J. Immunol. 200, 1088–1100 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe, K., Kuramitsu, S., Posey, A. D. Jr. & June, C. H. Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T cell biology. Front. Immunol. 9, 2486 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Gascoigne, N. R., Rybakin, V., Acuto, O. & Brzostek, J. TCR signal strength and T cell development. Annu. Rev. Cell Dev. Biol. 32, 327–348 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Karlsson, H. et al. Evaluation of intracellular signaling downstream chimeric antigen receptors. PLoS ONE 10, e0144787 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ramello, M. C. et al. An immunoproteomic approach to characterize the CAR interactome and signalosome. Sci. Signal. 12, eaap9777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rohrs, J. A., Zheng, D., Graham, N. A., Wang, P. & Finley, S. D. Computational model of chimeric antigen receptors explains site-specific phosphorylation kinetics. Biophys. J. 115, 1116–1129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gulati, P. et al. Aberrant Lck signal via CD28 costimulation augments antigen-specific functionality and tumor control by redirected T cells with PD-1 blockade in humanized mice. Clin. Cancer Res. 24, 3981–3993 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Guedan, S. et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 3, 96976 (2018).

    Article  PubMed  Google Scholar 

  74. Gomes da Silva, D. et al. Direct comparison of in vivo fate of second and third-generation CD19-specific chimeric antigen receptor (CAR)-T cells in patients with B-cell lymphoma: reversal of toxicity from tonic signaling. Blood 128, 1851 (2016).

    Article  Google Scholar 

  75. Sun, C. et al. THEMIS-SHP1 recruitment by 4-1BB tunes LCK-mediated priming of chimeric antigen receptor-redirected T cells. Cancer Cell 37, 216–225 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zolov, S. N., Rietberg, S. P. & Bonifant, C. L. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR-T cells. Cytotherapy 20, 1259–1266 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wan, Z. et al. Transmembrane domain-mediated Lck association underlies bystander and costimulatory ICOS signaling. Cell. Mol. Immunol. 17, 143–152 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Fooksman, D. R. et al. Functional anatomy of T cell activation and synapse formation. Annu. Rev. Immunol. 28, 79–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Korman, A. J., Peggs, K. S. & Allison J. P. Checkpoint Blockade in Cancer Immunotherapy, Vol. 90 297–339 (Elsevier; 2006).

  85. Yokosuka, T. et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase Cθ translocation. Immunity 29, 589–601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mukherjee, M., Mace, E. M., Carisey, A. F., Ahmed, N. & Orange, J. S. Quantitative imaging approaches to study the CAR immunological synapse. Mol. Ther. 25, 1757–1768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Campi, G., Varma, R. & Dustin, M. L. Actin and agonist MHC–peptide complex–dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T. Cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Saito, T., Yokosuka, T. & Hashimoto-Tane, A. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett. 584, 4865–4871 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Zinselmeyer, B. H. et al. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med. 210, 757–774 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yi, J., Wu, X. S., Crites, T. & Hammer, J. A. III Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. Mol. Biol. Cell 23, 834–852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wabnitz, G., Balta, E. & Samstag, Y. l-Plastin regulates the stability of the immune synapse of naive and effector T-cells. Adv. Biol. Regul. 63, 107–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Johnson, K. G., Bromley, S. K., Dustin, M. L. & Thomas, M. L. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc. Natl. Acad. Sci. USA 97, 10138–10143 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Sims, T. N. et al. Opposing effects of PKCtheta and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129, 773–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Davenport, A. J. et al. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc. Natl. Acad. Sci. USA 115, E2068–E2076 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Xiong, W. et al. Immunological synapse predicts effectiveness of chimeric antigen receptor cells. Mol. Ther. 26, 963–975 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Davenport, A. J. et al. CAR-T cells inflict sequential killing of multiple tumor target cells. Cancer Immunol. Res. 3, 483–494 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Davenport, A. J. & Jenkins, M. R. Programming a serial killer: CAR T cells form non-classical immune synapses. Oncoscience 5, 69–70 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Offner, S., Hofmeister, R., Romaniuk, A., Kufer, P. & Baeuerle, P. A. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 43, 763–771 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Helsen, C. W. et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat. Commun. 9, 3049 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Jeon, B. N. et al. Actin stabilizer TAGLN2 potentiates adoptive T cell therapy by boosting the inside-out costimulation via lymphocyte function-associated antigen-1. Oncoimmunology 7, e1500674 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang, X. et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma. Clin. Cancer Res. 24, 106–119 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Joseph, N., Reicher, B. & Barda-Saad, M. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. Biochim. Biophys. Acta 1838, 557–568 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Lewis, R. S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Schulze-Luehrmann, J. & Ghosh, S. Antigen-receptor signaling to nuclear factor kappa B. Immunity 25, 701–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Roche, M. I., Ramadas, R. A. & Medoff, B. D. The role of CARMA1 in T cells. Crit. Rev. Immunol. 33, 219–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sun, W. & Yang, J. Molecular basis of lysophosphatidic acid-induced NF-kappaB activation. Cell. Signal. 22, 1799–1803 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hayden, M. S. & Ghosh, S. Shared principles in NF-kappaB signaling. Cell 132, 344–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Roose, J. P., Mollenauer, M., Ho, M., Kurosaki, T. & Weiss, A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol. Cell. Biol. 27, 2732–2745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Roskoski, R. Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharm. Res. 66, 105–143 (2012).

    Article  CAS  Google Scholar 

  115. Benmebarek, M. R. et al. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int. J. Mol. Sci. 20, E1283 (2019).

    Article  PubMed  CAS  Google Scholar 

  116. Liu, Y. et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci. Immunol. 5, eaax7969 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Rudd, C. E., Taylor, A. & Schneider, H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 229, 12–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Fos, C. et al. ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse. J. Immunol. 181, 1969–1977 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Wikenheiser, D. J. & Stumhofer, J. S. ICOS co-stimulation: friend or foe? Front. Immunol. 7, 304 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. & Bluestone, J. A. CD28 costimulation: from mechanism to therapy. Immunity 44, 973–988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cheng, Z. et al. In vivo expansion and antitumor activity of coinfused CD28- and 4-1BB-engineered CAR-T Cells in patients with B cell leukemia. Mol. Ther. 26, 976–985 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kegler, A. et al. T cells engrafted with a UniCAR 28/z outperform UniCAR BB/z-transduced T cells in the face of regulatory T cell-mediated immunosuppression. Oncoimmunology 8, e1621676 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Weinkove, R., George, P., Dasyam, N. & McLellan, A. D. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin. Transl. Immunol. 8, e1049 (2019).

    Article  Google Scholar 

  125. Kofler, D. M. et al. CD28 costimulation Impairs the efficacy of a redirected t-cell antitumor attack in the presence of regulatory t cells which can be overcome by preventing Lck activation. Mol. Ther. 19, 760–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zheng, W. et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32, 1157–1167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Ajina, A. & Maher, J. Strategies to address chimeric antigen receptor tonic signaling. Mol. Cancer Ther. 17, 1795–1815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Klein Geltink, R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Harada, Y. et al. A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J. Exp. Med. 197, 257–262 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Guedan, S. et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124, 1070–1080 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ward-Kavanagh, L. K., Lin, W. W., Sedy, J. R. & Ware, C. F. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 44, 1005–1019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Oh, H. S. et al. 4-1BB signaling enhances primary and secondary population expansion of CD8+ T cells by maximizing autocrine IL-2/IL-2 receptor signaling. PLoS ONE 10, e0126765 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Snell, L. M., Lin, G. H., McPherson, A. J., Moraes, T. J. & Watts, T. H. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol. Rev. 244, 197–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Bartkowiak, T. & Curran, M. A. 4-1BB agonists: multi-potent potentiators of tumor immunity. Front. Oncol. 5, 117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tamada, K. et al. LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J. Immunol. 164, 4105–4110 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Singh, N. et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T cell dysfunction. Cancer Discov. 10, 552–567 (2020).

    Article  PubMed  Google Scholar 

  140. Mamonkin, M. et al. Reversible transgene expression reduces fratricide and permits 4-1BB costimulation of CAR T cells directed to T-cell malignancies. Cancer Immunol. Res. 6, 47–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Kunkele, A. et al. Functional tuning of CARs reveals signaling threshold above which CD8+ CTL antitumor potency is attenuated due to cell Fas-FasL-dependent AICD. Cancer Immunol. Res. 3, 368–379 (2015).

    Article  PubMed  CAS  Google Scholar 

  142. Nunoya, J. I., Masuda, M., Ye, C. & Su, L. Chimeric antigen receptor T cell bearing herpes virus entry mediator co-stimulatory signal domain exhibits high functional potency. Mol. Ther. Oncolytics 14, 27–37 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hombach, A. A., Heiders, J., Foppe, M., Chmielewski, M. & Abken, H. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology 1, 458–466 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Siegel, A. M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guest, R. D. et al. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J. Immunother. 28, 203–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Hombach, A. et al. T cell activation by recombinant FcepsilonRI gamma-chain immune receptors: an extracellular spacer domain impairs antigen-dependent T cell activation but not antigen recognition. Gene Ther. 7, 1067–1075 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Hombach, A. A. et al. T cell activation by antibody-like immunoreceptors: the position of the binding epitope within the target molecule determines the efficiency of activation of redirected T cells. J. Immunol. 178, 4650–4657 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. James, S. E. et al. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J. Immunol. 180, 7028–7038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zah, E., Lin, M. Y., Silva-Benedict, A., Jensen, M. C. & Chen, Y. Y. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol. Res. 4, 498–508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Qin, H. et al. Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein. Blood 126, 629–639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Sun, B. et al. Eradication of hepatocellular carcinoma by NKG2D-based CAR-T cells. Cancer Immunol. Res. 7, 1813–1823 (2019).

    Article  PubMed  CAS  Google Scholar 

  156. Stone, J. D., Aggen, D. H., Schietinger, A., Schreiber, H. & Kranz, D. M. A sensitivity scale for targeting T cells with chimeric antigen receptors (CARs) and bispecific T-cell engagers (BiTEs). Oncoimmunology 1, 863–873 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Watanabe, K. et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 zeta chimeric antigen receptor-modified effector CD8+ T cells. J. Immunol. 194, 911–920 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Hoseini, S. S. & Cheung, N. V. Immunotherapy of hepatocellular carcinoma using chimeric antigen receptors and bispecific antibodies. Cancer Lett. 399, 44–52 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Oren, R. et al. Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds. J. Immunol. 193, 5733–5743 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Roselli, E. et al. CAR-T engineering: optimizing signal transduction and effector mechanisms. BioDrugs 33, 647–659 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Chmielewski, M., Hombach, A., Heuser, C., Adams, G. P. & Abken, H. T. Cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J. Immunol. 173, 7647–7653 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Caruso, H. G. et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 75, 3505–3518 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu, X. et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res. 75, 3596–3607 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Talavera, A. et al. Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Res. 69, 5851–5859 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Lynn, R. C. et al. High-affinity FRbeta-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity. Leukemia 30, 1355–1364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Walker, A. J. et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25, 2189–2201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hudecek, M. et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res. 19, 3153–3164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Smith, E. L. et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 11, eaau7746 (2019).

    Article  PubMed  CAS  Google Scholar 

  169. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hegde, M. et al. Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J. Clin. Invest. 126, 3036–3052 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Liadi, I. et al. Individual motile CD4(+) T cells can participate in efficient multikilling through conjugation to multiple tumor cells. Cancer Immunol. Res. 3, 473–482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Yang, Y. et al. TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci. Transl. Med. 9, eaag1209 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Cheadle, E. J. et al. Differential role of Th1 and Th2 cytokines in autotoxicity driven by CD19-specific second-generation chimeric antigen receptor T cells in a mouse model. J. Immunol. 192, 3654–3665 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Laux, I. et al. Response differences between human CD4(+) and CD8(+) T-cells during CD28 costimulation: implications for immune cell-based therapies and studies related to the expansion of double-positive T-cells during aging. Clin. Immunol. 96, 187–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Zhang, H. et al. 4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy. J. Immunol. 179, 4910–4918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chan, W. K. et al. Chimeric antigen receptor-redirected CD45RA-negative T cells have potent antileukemia and pathogen memory response without graft-versus-host activity. Leukemia 29, 387–395 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Koristka, S. et al. Engrafting human regulatory T cells with a flexible modular chimeric antigen receptor technology. J. Autoimmun. 90, 116–131 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Hombach, A. A. & Abken, H. Most do, but some do not: CD4(+)CD25(−) T cells, but not CD4(+)CD25(+) Treg cells, are cytolytic when redirected by a chimeric antigen receptor (CAR). Cancers 9, 112 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  180. Boroughs, A. C. et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 5, e126194 (2019).

    Article  Google Scholar 

  181. Benveniste, P. M. et al. Generation and molecular recognition of melanoma-associated antigen-specific human gammadelta T cells. Sci. Immunol. 3, eaav4036 (2018).

    Article  PubMed  Google Scholar 

  182. Vermijlen, D., Gatti, D., Kouzeli, A., Rus, T. & Eberl, M. gammadelta T cell responses: how many ligands will it take till we know? Semin. Cell Dev. Biol. 84, 75–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Mirzaei, H. R., Mirzaei, H., Lee, S. Y., Hadjati, J. & Till, B. G. Prospects for chimeric antigen receptor (CAR) gammadelta T cells: a potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett. 380, 413–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Fisher, J. et al. Avoidance of on-target off-tumor activation using a co-stimulation-only chimeric antigen receptor. Mol. Ther. 25, 1234–1247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Capsomidis, A. et al. Chimeric antigen receptor-engineered human gamma delta T cells: enhanced cytotoxicity with retention of cross presentation. Mol. Ther. 26, 354–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Sebestyen, Z., Prinz, I., Dechanet-Merville, J., Silva-Santos, B. & Kuball, J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug Discov. 19, 169–184 (2019).

    Article  PubMed  CAS  Google Scholar 

  187. Dufva, O. et al. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T cell cytotoxicity. Blood 135, 597–609 (2019).

    Article  Google Scholar 

  188. Dougan, M. et al. IAP inhibitors enhance co-stimulation to promote tumor immunity. J. Exp. Med. 207, 2195–2206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Michie, J. et al. Antagonism of IAPs enhances CAR T-cell efficacy. Cancer Immunol. Res. 7, 183–192 (2019).

    Article  PubMed  Google Scholar 

  190. Cui, J. et al. Inhibition of PP2A with LB-100 enhances efficacy of CAR-T cell therapy against glioblastoma. Cancers 12, 139 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  191. Kim, E. H. & Suresh, M. Role of PI3K/Akt signaling in memory CD8 T cell differentiation. Front. Immunol. 4, 20 (2013).

    PubMed  PubMed Central  Google Scholar 

  192. Mestermann, K. et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci. Transl. Med. 11, eaau5907 (2019).

    Article  PubMed  CAS  Google Scholar 

  193. Weber, E. W. et al. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 3, 711–717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dahmani, A. et al. TGFbeta programs central memory differentiation in ex vivo-stimulated human T cells. Cancer Immunol. Res. 7, 1426–1439 (2019).

    Article  PubMed  Google Scholar 

  195. Singh, H. et al. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res. 71, 3516–3527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cieri, N. et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121, 573–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mardiana, S. et al. A multifunctional role for adjuvant anti-4-1BB therapy in augmenting antitumor response by chimeric antigen receptor T cells. Cancer Res. 77, 1296–1309 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Grosser, R., Cherkassky, L., Chintala, N. & Adusumilli, P. S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36, 471–482 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Marshall, N. et al. Antitumor T-cell homeostatic activation is uncoupled from homeostatic inhibition by checkpoint blockade. Cancer Discov. 9, 1520–1537 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Kondo, T. et al. The NOTCH-FOXM1 axis plays a key role in mitochondrial biogenesis in the induction of human stem cell memory-like CAR-T cells. Cancer Res. 80, 471–483 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Akahori, Y. et al. Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination. Blood 132, 1134–1145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Slaney, C. Y. et al. Dual-specific chimeric antigen receptor T cells and an indirect vaccine eradicate a variety of large solid tumors in an immunocompetent, self-antigen setting. Clin. Cancer Res. 23, 2478–2490 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Collinson-Pautz, M. R. et al. Constitutively active MyD88/CD40 costimulation enhances expansion and efficacy of chimeric antigen receptor T cells targeting hematological malignancies. Leukemia 33, 2195–2207 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Shum, T. et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov. 7, 1238–1247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yeku, O. O., Purdon, T. J., Koneru, M., Spriggs, D. & Brentjens, R. J. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci. Rep. 7, 10541 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl. Acad. Sci. USA 113, E7788–E7797 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Hu, B. et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 20, 3025–3033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Vinanica, N. et al. Specific stimulation of T lymphocytes with erythropoietin for adoptive immunotherapy. Blood 135, 668–679 (2019).

    Article  Google Scholar 

  211. Mocellin, S., Wang, E. & Marincola, F. M. Cytokines and immune response in the tumor microenvironment. J. Immunother. 24, 392–407 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Nakajima, M., Sakoda, Y., Adachi, K., Nagano, H. & Tamada, K. Improved survival of chimeric antigen receptor-engineered T (CAR-T) and tumor-specific T cells caused by anti-programmed cell death protein 1 single-chain variable fragment-producing CAR-T cells. Cancer Sci. 110, 3079–3088 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sukumaran, S. et al. Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Discov. 8, 972–987 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bajgain, P. et al. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J. Immunother. Cancer 6, 34 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas R. J. Gascoigne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wei, Q., Brzostek, J. et al. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 17, 600–612 (2020). https://doi.org/10.1038/s41423-020-0470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0470-3

Keywords

This article is cited by

Search

Quick links