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Human cancer germline antigen-specific cytotoxic T cell—
what can we learn from patient
Megat Abd Hamid1, Yanchun Peng1,2 and Tao Dong1,2

In this review, we will highlight the importance of cancer germline antigen-specific cytotoxic CD8+ T lymphocytes (CTL) and the
factors affecting antitumor CTL responses. In light of cancer immunotherapy, we will emphasis the need to further understand the
features, characteristics, and actions of modulatory receptors of human cancer germline-specific CTLs, in order to determine the
optimal conditions for antitumor CTL responses.
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INTRODUCTION
Cancer is one of the leading causes of mortality worldwide, with
lung, colorectal, and liver cancer being the most common types
of tumors.1,2 The small success rates in certain types of patients
treated with current conventional cancer therapy such as
radiotherapy and chemotherapy is contributed to not only by
the multidrug resistance of cancer cells, but also by the
low immunogenicity of tumors and the suppressive tumor
microenvironment to immune cells.3–5 Therefore, cancer immu-
notherapy in which treatment is administered to patients to
promote or restore the priming and antitumor activities of
T cells has been of increasing interest. It is likely that combining
immunotherapy with conventional treatment would
allow better antitumor responsiveness and lead to cancer
elimination.
Numerous clinical studies have established that the presence

and enrichment of tumor-infiltrating T lymphocytes (TILs) in solid
tumors is highly associated with better outcome in cancer
patients.6–10 Importantly, tumors with enriched TILs (hot tumors)
are highly receptive to immunotherapy compared with TILs-
diminished tumors (cold tumors).11,12 In addition, studies using
murine models further showed that adoptive transfer of T cells
into tumor bearing mice exhibited significant tumor regression
and improved overall response rate.13–16

Antitumor T-cell responses are critical to impeding cancer
progression and can be targeted for therapy: clinical trials that
block inhibitory receptors (IRs), such as PD-1 and CTLA-4, have
shown great success. However, not all patients respond to the
current immune-checkpoint inhibitors.17–19 In addition, the risk
of causing autoimmune disease is high—largely due to the
nonspecific nature of the approaches.20–22 New therapies that
target cancer-specific immune cells are needed to improve
patient outcomes, but our understanding of how cancer-specific
T-cell responses go awry in patients is limited. To make progress,
we must delineate the diverse mechanisms exploited by

evolving tumors that cause T cells to lose their ability to detect
and eliminate cancer cells in specific patients, and determine to
what extent these functions can be restored. Furthermore, it is
key to investigate how potential toxic effects may be controlled
and T-cell exhaustion could be prevented.
The presence of T cells with impaired function correlates with

poor patient prognosis in several types of cancers and chronic
infections.22 Effective immunotherapies can augment cancer-
specific immunity by improving the effector cell functions of
cytotoxic T cells or the antigen presentation capacity of antigen
presenting cells (APC) against cancer cells.
However, multiple factors will affect the quality of T-cell

responses such as antigenic variation, the tumor microenviron-
ment, and host genetics.23–25 Little is known in human settings
about how these factors influence the net function of cancer-
specific cytotoxic T lymphocytes (CTL), or the extent to which
they synergize to silence cancer-specific CTLs in patients. A
clearer understanding of the biologic and molecular aspects
of CTL dysfunction in large patient cohorts is needed. We must
not only develop more efficient strategies for checkpoint
blockade, but also develop new therapies (combination or
monotherapies) to deliver specific T-cell immunotherapy
with optimal activation to prevent T-cell exhaustion or host
pathology.
The current hypothesis is that optimal cancer-specific CTL

function is determined by antigen sensitivity, which is influ-
enced by T-cell receptor (TCR) affinity to different tumor
antigens peptide loaded onto MHC class Ia molecules and/or
nonclassical MHC class Ib molecules, such as HLA-E. In contrast
to MHC class Ia, HLA-E are often highly upregulated in tumors.
Furthermore, cancer-specific CTL function is modulated by IRs
and co-stimulatory receptors that accumulate during disease
progression. Disturbance of the fine balance of these factors
alters optimal T-cell function and contributes to cancer
development and metastases (Fig. 1).

Received: 8 April 2020 Revised: 10 May 2020 Accepted: 12 May 2020
Published online: 25 May 2020

1Nufield Department of Medicine, Chinese Academy of Medical Science Oxford Institute (COI), University of Oxford, Oxford, UK and 2MRC Human Immunology Unit, MRC
Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
Correspondence: Tao Dong (tao.dong@imm.ox.ac.uk)

www.nature.com/cmi Cellular & Molecular Immunology

© The Author(s) 2020

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41423-020-0468-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41423-020-0468-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41423-020-0468-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41423-020-0468-x&domain=pdf
mailto:tao.dong@imm.ox.ac.uk
www.nature.com/cmi


TUMOR ANTIGEN-TCR RECOGNITION AND ITS USAGE IN
CANCER IMMUNOTHERAPY
Cancer germline (testis) antigens (CTA)
Among the different classifications of cancer antigens, the primary
classes that are at present widely used in cancer immunotherapy
research are cancer neoantigens, oncoviral antigens, and CTA.
Neoantigens are a class of antigens that is completely foreign and
absent in normal human tissues and cells while present exclusively
on cancer cells. In contrast, oncoviral antigens are peptides
expressed by virally associated tumors, such as oncoprotein E7 of
human papillomavirus 16.26,27 Neoantigen-specific and oncoviral
antigen-specific T cells bearing TCRs of full range of affinities to
pMHC, especially high affinity T cells. Following chronic stimula-
tion of neoantigen-/oncoviral antigen-specific T cells, they can
become exhausted and dysregulated, with expression of IRs such
as PD-1 and CTLA-4.28,29

CTAs are a class of antigens not typically expressed by normal
cells outside of the testes—cells of which do not express MHC
class I, nor present antigens to CD8+ T cells. However, CTAs are
frequently expressed on cancer cells.30 Human CTAs, such as
synovial sarcoma X-2 (SSX-2), New York-esophageal squamous cell
carcinoma-1 (NY-ESO-1), and melanoma associated antigen A-1 or
A-3 are over-expressed in different human cancers such as in
melanoma and lung cancer.31–33 CTA-specific T cells are frequently
detected in cancer patients and contribute to tumor regression.
Several studies using CTA vaccine strategy have demonstrated
correlation between increased CTA-specific T-cell responses with
progression-free survival.34,35 This benefit is further confirmed by
another study showing that CTA+ patients receiving adoptive
transfer of autologous T cells transduced with NY-ESO-1-specific
TCR exhibited better clinical responses.36 However, due to the
nature of CTA antigens, TCRs used by T cells specific to these
antigens possibly have lower affinity for pMHC and exhibit weaker

antigen sensitivity or lower functional avidity. Although CTA-
specific T cells are less likely to express high level of activation-
induced IRs,37–39 some of them can demonstrate upregulation of
germline-like IR expression, such as CD94/NKG2a with compro-
mised antitumor activity.40 Exploring how to improve antitumor
activities of CTA-specific CTLs could provide profound and broader
clinical benefits to cancer patients.

Engineered TCR-T cells strategy for cancer immunotherapy
Engineered cancer-specific TCR-T cells is one of the current
immunotherapy strategies designed with the aim of improving
antitumor T-cell responses in patients. It is a directed therapy
using TCR of T cells that specifically target/recognize cells
expressing particular antigen such as CTAs. Careful selection of
TCRs that selectively recognize cancer pMHC molecules on tumors
but not on normal tissues—form a vital aspect of this
approach.41,42

In humans, the TCR diversity is estimated to be up to 1018

variations, due to the random DNA rearrangement of each of the
TCR chain and in the random pairing of TCR α and β chains (as
well as γδ TCRs) on individual T cell.43–45 Each TCR recognizes
specific antigen, such as viral, bacterial, or oncogenic antigens
bounded on specific MHC type (with diverse MHC alleles present).
Considering the large variety in TCR repertoire and antigen
specificities, the canonical method of selecting the correct TCRs
for engineering is through sequencing TCR α chain and β chain
mRNAs from in vitro-cultured T cells of cancer patients, or using
algorithmic predictions based of the CDR3 binding region of
TCRs.42,46–48 The highly specific and directed nature of TCR–pMHC
interaction prevent engineered TCR-T cell from targeting cells that
do not express the specific tumor antigen and MHC restriction.
Significant success has been highlighted in various preclinical

and clinical studies in human with different types of cancer

Fig. 1 Optimal human cancer-specific T-cell responses are determined by multiple factors: (1) T cells express specific TCRs with weak affinity
to MHC loaded with self-antigenic peptides including tumor associated (TAA) or cancer germline antigens (CTA), while neoantigen or viral-
onco antigen (foreign) would span the full range of affinities, especially high affinity TCRs. When strong and consistent stimulation of a T cell
occurs, it becomes exhausted and starts to express inhibitory receptors like PD-1 and CTLA-4. There is also a class of inhibitory as well as co-
stimulatory receptors expressed on CTL, independent of antigen stimulation and cell activation, such as CD94/NKG2A and CD103. (2) Together
these factors determine the overall antigen sensitivity of T cells, and (3) the level of subsequent T-cell functions such as: killing ability,
proliferation, energy consumption, etc. (4) The optimal function of T cells is determined by immune balance between all these factors, such
that a T cell may preserve its ability to kill its target cells, to produce cytokines, and to migrate whilst preventing exhaustion and death. The
reason why cancer cells may grow in an uncontrolled fashion is likely due to T cells in their environment becoming dysfunctional/exhaustion
or ineffective as a result of too low or too high antigen sensitivity. Combination of approaches to maintain T-cell optimal function and
specificity is the key to controlling cancer development in patients
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including synovial, myeloma, colorectal carcinoma, and mela-
noma. A study in 2006 using engineered MART-1-specific TCR-T
cells demonstrated significant tumor regression in treated
melanoma patients.49 Another study by Rosenberg et al. has
shown that more than 19% of metastatic melanoma patients
receiving adoptive transfer of gp100-specific TCR-T cells exhibited
strong antitumor T-cell responses posttreatment.50 Various other
studies have gone into clinical trials including TCR-T cells that
target CTA pMHC molecules. Treatment using TCR-T cells targeting
HLA-A0201-restricted NY-ESO-1 cancer antigen exhibited
improved overall clinical response rate in more than 50% of
melanoma, synovial or multiple myeloma patients, with no off-site
toxicities observed.36,51,52 Importantly, prolonged presence of
TCR-T cells was detected in a clinical trial using HLA-A2-restricted
MAGE-A4-specific TCR-T cells in treated esophageal cancer
patients, with three patients having minimal lesions at 27 months
posttreatment.53 These clinical successes highlighted the impor-
tance and potential benefits of using precise and directed cancer
immunotherapy strategy specifically targeting tumor antigens-
expressing cancer cells.

CANCER IMMUNE EVASION AND THE IMPACTS ON CTL
RESPONSES
However, cancers are now well-established to employ diverse
mechanisms to escape antitumor immunity. Among the known
escape mechanisms include having reduced TCR/pMHC affinity,
downregulation of the pMHC class Ia surface expression, chronic
antigen exposure, and elevated expression of IRs such as PD-1.
Particularly for CTLs, it can result in having impaired activation and
proliferation, decreased production of inflammatory cytokines,
and limited or inefficient cancer cell killing. These factors
contribute to anergic and exhaustive state of T cells in tumor,
preventing CTLs from performing optimally in their antitumor
functions (Fig. 1).

Downregulation of MHC class Ia leads to compromised T-cell
priming, activation, and ineffective responses
One of the first known hallmarks of cancer cells is their ability to
downregulate MHC class Ia expression on their cell surface. This
observation is well-established in multiple cancer types, including
in melanoma and lung cancers.54,55 The downregulation of MHC
class Ia expression is thought to involve the dysregulation of
antigen processing machinery such as transporter-associated
protein (TAP), tapasin, and calnexin. Resultant inefficient antigen
processing leads to reduced presentation of stabilized pMHC at
the cancer cell surface.55 In turn, the lack of pMHC presentation
can impair cancer-specific CTLs’ ability to identify and kill cancer
cells, as the pMHC downregulation masks the dysregularity and
presence of oncogenic cells. Interestingly, our group has recently
shown that this downregulation was not only observed on tumor
cells, but also on the APCs in the tumor microenvironment such as
on the tumor-residing CD141+ conventional dendritic cells (cDC)
and macrophages.40 As APCs are critical for mediating adaptive
immune responses, the overall downregulation of pMHC in the
tumor microenvironment may lead to a compromised T-cell
priming and activation.

Exhausted T cells exhibit elevated inhibitory receptor expression
It is now well-established that chronic tumor antigen stimulation
and the immunosuppressive tumor microenvironment have
driven T cells to exhaustion. Exhausted TILs exhibit upregulated
expression of multiple IRs such as PD-1, CTLA-4, and Tim3. The
immunosuppressive tumor microenvironment could present the
necessary ligands to these IRs which, in turn, impairs, limits, and
exhausts antitumor T-cell activities. Due to their elevated presence
in cancer, the primary focus of current immunotherapy has been
on immune-checkpoint blockade treatment, in order to block the

inhibitory effects of IRs so as to allow T cells to recover their
antitumor responses.
CTLA-4 was the first IR found to negatively affect TILs’ functions.

In healthy condition, CTLA-4 is an IR inducible upon T-cell
activation. CTLA-4 recognizes B7-1 (CD80) and B7-2 (CD86), the
same ligands that can be recognized by the co-stimulatory
receptor CD28. In contrast to CD28, CTLA-4 negatively regulates
the activation of T cells.56 In preclinical cancer models, CTLA-4
blocking antibody treatment in mice was found to successfully
prevent tumor establishment and also promote tumor
rejection.57,58 However, in human clinical studies, fully humanized
anti-CTLA-4 treatment, such as ipilimumab, was shown to increase
the risk of autoimmune diseases such as colitis in certain treated
cancer patients.59,60

PD-1 is well-established to contribute to T-cell exhaustion in
cancer. PD-1 interact with its ligands, PD-L1 or PD-L2, and can
mediate the epigenetic transformation of T cells, creating
hyporesponsive a T-cell phenotype that resembles senescence,
leading to cell cycle arrest and reduced cytolytic activities of
CTLs.61–63 Activation of PD-1 on T cells phosphorylates the
downstream inhibitory molecule SHP-1, a protein known to
negatively affect the cascade signaling of TCR by interfering with
the phosphorylation of ZAP70 and PKCθ, impairing—among other
factors—the calcium utilization of T cells.64,65

In tumors, both PD-1 and PD-L1 are known to be upregulated
on TILs and cancer cells. Preclinical studies blocking the PD-1/PD-
L1 axis demonstrated increased overall T-cell activation, antitumor
T-cell responses, and inhibition of murine tumor growth.66,67 In
humans, fully humanized anti-PD-1 antibodies such as pembro-
lizumab and anti-PD-L1 antibodies such as atezolizumab have
demonstrated significant tumor regression, such as in melanoma,
lung and renal carcinoma patients.68–70 Furthermore, it was found
that metastatic patients with high PD-L1 expression treated with
pembrolizumab exhibited active proliferation of cytotoxic TILs,
with decreasing tumor size.11 It is therefore not surprising that
pembrolizumab was successfully certified by the US FDA in 2014
for the treatment of metastatic and late stage cancer patients.
However, it is worth noting that treatment with anti-PD-1 or anti-
PD-L1 failed to improve outcome in certain cancer patients and
cancer types. It is therefore likely that other mechanisms could be
at play, either by compensating loss of the PD-1/PD-L1 axis or by
imposing inhibitory effects on TILs independently from influence
of PD-1/PD-L1.

Other known inhibitory receptors
Other IRs have also been discussed as potential targets for cancer
immunotherapy, including Tim3, BTLA, and TIGIT. Tim3 was
originally found to suppress the effector Th1 responses in murine
model of multiple sclerosis.71 In chronic viral infection, Tim3
expression is highly persistent and is associated with the
inflammatory regulation of T cells.72 In cancer, Tim3+ TILs in lung
cancer patients exhibited significant defects in cytokine produc-
tion and T-cell proliferation.3,73 Furthermore, co-expressed Tim3+

PD-1+ TILs were demonstrated to represent a deeply exhausted T-
cell population, with a strong association to tumor progression
such as in prostate, colorectal, and hepatocellular carcinoma.74,75

In contrast, TIGIT was found to inhibit spontaneous T-cell
activation, and is primarily expressed following T-cell activation
and on memory T cells.76 BTLA is also expressed following T-cell
activation and phosphorylation of this receptor is known to
interfere with the downstream TCR-mediated signaling cascade.77

A recent study in our group has shown that the expression of
BTLA, TIGIT, KLRG-1, and 2B4 is not enriched on TILs compared
with their counterparts in peripheral blood of cancer patients.78

Most importantly, we found that co-expression of specific IRs
including Tim3 and PD-1 is highly prevalent on CD8+ TILs across
different cancer types, such as in lung, kidney, and breast cancers.
This suggests that certain IRs are likely more favored in the tumor
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microenvironment to suppress antitumor CTLs responses. The co-
expression of multiple IRs on TILs indicates the possibility that
mono-immunotherapy targeting a single IR might not be enough,
as there could be compensatory inhibitory mechanisms taking
place. Therefore, as others in the field have suggested, a
combinatory immune-checkpoint blockade immunotherapy strat-
egy could provide better clinical responses in cancer patients.

CO-STIMULATORY RECEPTORS AND THEIR IMPORTANCE IN
ANTITUMOR CTLS RESPONSES
In contrast to IRs, co-stimulatory receptors of T cells act as a
secondary signal for an effective TCR-mediated T-cell activation
and immune response. Current well-established co-stimulatory
receptors of T cells include CD28, 4-1BB, and ICOS. It is known that
an overall activation of T cells without co-signaling can lead to T-
cell anergy, a state of hypo-responsiveness and growth arrest, and
contribute toward dysregulated immune tolerance and impaired
effector functions.79

CD28 is the best characterized co-stimulatory receptor of
activated T cells, acquired only following activation. Its ligation
to CD80 or CD86 promotes T-cell proliferation, cytokine produc-
tion, cell survival, and stabilization of cytokine mRNAs.80–82 Studies
using a CD28-deficient murine model highlighted the necessity of
CD28. In this study, its absence was shown to result in an
ineffective effector response and a lack of viral control.83 In
addition, adoptive transfer of CD80-transfectant tumor cells into
mice produced a strong CD28-responsive CTL-mediated immune
responses and tumor rejection.84 As CD28 and CTLA-4 share the
same ligands of CD80 and CD86,56 these two receptors heavily
compete for the same ligand recognition and therefore can affect
and define the overall activatory or inhibitory outcome of T-cell
activities.
4-1BB: similarly to CD28, both 4-1BB and ICOS are only

expressed by T cells following T-cell activation. For 4-1BB, its
ligation to 4-1BBL, expressed mainly on dendritic cells, allows
conducive effector CTL responses.85,86 A preclinical study using 4-
1BB agonist in combination with anti-PD-1 treatment in a tumor
bearing murine model demonstrated an elevated IFNγ response,
mediated primarily by the effector memory CTLs.87 In a human
setting, a phase I clinical trial with 4-1BB agonist (utomilumab)
showed not only its safety, but also that the agonistic antibody
induced higher overall response rates in melanoma patients.88

However, <4% of nonmelanoma cancer patients with solid tumors
treated with this regiment exhibited improved responses. Another
anti-4-1BB antibody (urelumab) used in clinical trial for treatment
of advanced cancers unfortunately induced severe liver toxicity in
some of the patients treated, likely due to nonspecific immune
cells activation that may cause tissue damage.89

ICOS, also known as CD278, is present on activated T cells and
interacts with its ligand, ICOS-L, expressed mainly on APCs.
Activation of ICOS was first known to enhanced T-cell
proliferation.90,91 Interestingly, preclinical studies demonstrated
that ICOS was upregulated following anti-CTLA-4 treatment in
tumor bearing murine models, suggesting that it could be an
important mediator of better T-cell responses in the anti-CTLA-4
treated patients.92,93

GERMLINE-LIKE RECEPTORS AND THEIR POTENTIAL ROLE IN
OPTIMAL CTL RESPONSES
Progression of CTLs into an exhausted or dysfunctional state is
mainly caused by chronic antigen exposure, inefficient T-cell
activation and the upregulation of activation-associated IR
expression, such as PD-1. The immunosuppressive tumor micro-
environment nudges TILs into an exhausted state, and prevents
optimal antitumor T-cell responses (Fig. 1). Constitutive markers of
T cells include germline-like receptors such as CD103 and NKG2a,

which, with their ligands continually presented robustly on most
cancer cells, are much less studied for their function as co-
stimulatory or co-IR for CTLs. These germline-like receptors could
be critical to understanding the optimal conditions for effective
antitumor T-cell immune responses.

CD103, more than a tissue residency marker
CD103, also known as integrin alpha E, was first discovered as a T-
cell marker for tissue retention and residency, especially in the gut
and lung. It forms heterodimeric pairing with integrin beta 7 to
form a complete complex recognized by E-cadherin, a molecule
expressed at moderate level primarily by epithelial cells. Interac-
tion between CD103 and E-cadherin allows attachment of CD103+

immune cells to tissue.94,95 Also termed as CD103+ tissue-resident
memory T cells (CD103+ Trm cells), they lack tissue exit markers
such as CD62L, CCR7, S1PR1, and CX3CR1, while upregulating
Notch transcription factor and pro-survival molecules such as Bcl-2
and BIRC3.96–102

CD103 expression is known to be acquired during naive T-cell
development, following initial antigen pMHC contact and in the
presence of TGF-β1.103,104 Notably, Batf3-dependent murine DC
and human CD1c+ cDC were defined as the primary producer of
TGF-β1 and antigenic contact during the development pro-
cess.105–107 Recently, our group has surprisingly found the
presence of matured CD103+ CTA-specific CTLs from the
peripheral blood of cancer patients.108 Most importantly, this
unique T-cell population can self-produce activated TGF-β1
through its own membrane β8 expression to sustain its CD103
expression (Fig. 2).
CD103+ T cells were found to help mediate better immune

surveillance. For example, enrichment of Trm cells in tissue
resulted in faster clearance of influenza murine lung infection and
HSV murine skin infection.96,109 In cancer, murine studies have
shown that the presence of CD103 on TILs contributes to elevated
T-cell infiltration into solid tumors, with better tumor control.110,111

Consistent with its known role as a retention marker, our group
and others have shown that CD103+ TILs can home and localize
better to E-cadherin+ tumor islets.97,108,111 Importantly, we found
that they clustered at a higher density within and surrounding the
E-cadherin+ tumor islets, compared with the CD103− TILs108

(Fig. 2). In addition, epithelial-derived cancer cells are also known
to over-express E-cadherin on their surface. Altogether, it is
therefore likely that CD103+ TILs could play a significant role in
inducing better antitumor immune responses.
Interestingly, studies by Mami-Chouaib’s group have demon-

strated an accumulation of CD103 molecules within the point of
contact between CD103+ T cells and autologous E-cadherin+

cancer cells.112,113 The lack of E-cadherin on cancer cells can also
diminish the movement of CD103 into the interface. Surprisingly,
they showed that CD103 accumulation does overlap with an
enriched granzyme B presence within the synapse. This suggests
the possibility that CD103 could provide additional co-stimulatory
signaling for antitumor CTL cytotoxic responses, upon its
interaction with E-cadherin. This notion is supported by other
studies associating the enrichment of CD103+ TILs with better
clinical outcome in patients with either melanoma, colorectal or
lung cancer.100,114,115 Also, preclinical studies found that the lack
of E-cadherin on some melanoma cells can impair the overall
antitumor responsiveness of murine CD103+ Trm cells, even after
anti-CTLA-4 and anti-PD-1 treatments.116 However, it was unclear
how exactly the presence of CD103 contributes toward tumor
control.
As mentioned previously, TCR-CTA pMHC recognition is of low

affinity, and this can reduce the overall activation and response
of CTA-specific CTLs. Using circulation-derived, TCR-matched
CD103+ and CD103− CTA-specific CTLs, our group recently
showed that the presence of CD103 can help to significantly
elevate TCR antigen sensitivity.108 In particular, we found that
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TCR-matched CD103+ CTA-specific CTLs produce and secrete
elevated inflammatory cytokines such as IFNγ compared with
the TCR-matched CD103− CTLs. Most importantly, this unique T-
cell population exhibits faster recognition of individual cancer
cells and induces rapid antitumor cytotoxicity, primarily through
degranulation-mediated cytotoxicity. This form of cytotoxicity is
supported by a previous study showing elevated granzyme B
accumulation in the CD103+ T-cell immunological
synapse.112,113 Using live cell imaging, we further demonstrated
that CD103+ CTA-specific CTLs induce faster E-cadherin+ cancer
cell killing compared with the TCR-matched CD103− CTLs.108

This rapid killing allowed significantly higher numbers of
accumulative E-cadherin+ cancer cell deaths over time. The
elevated antigen sensitivity, however, was impaired following
either treatment with anti-CD103, or in the absence of E-
cadherin on cancer cells. It is therefore very likely that the
presence of CD103 on CTA-specific CTLs and its engagement
with E-cadherin on cancer cells help to either improve the
rapidness of immunological synapse formation, strengthening
the interaction kinetics of TCR–pMHC binding and/or activate
downstream signaling that acts as a co-signal to the TCR-
mediated activatory signaling.
An efficient antitumor response requires high energy usage,

particularly in producing and trafficking cytokines and cytolytic
molecules into the immunological synapse via the action of
cytoskeletal activities.117,118 It is therefore not surprising that our
group found that the CD103+ CTA-specific CTLs have elevated
glucose consumption over time, with higher maximal capacity to
metabolize glucose compared with the TCR-matched CD103−

CTLs.108

However, in the tumor microenvironment, enhanced glucose
consumption by cancer cells can deprive TILs of the essential
glucose needed for proper immune functioning.119 Interestingly, a
recent study by the Kupper group has demonstrated that virus-
specific CD103+ Trm cells are highly capable of utilizing
exogenous free fatty acids via their mitochondria, and this

contributed toward enforcing protective immunity against virus-
infected tissue.120 Importantly, our group has further shown in
cancer settings that the CD103+ CTA-specific CTLs have elevated
overall mitochondrial activities and maximal mitochondrial spare
capacity.108 This therefore suggests that in the case of glucose-
deprived microenvironments such as in cancer, CD103+ CTA-
specific CTLs could compensate the lack of glucose metabolism
with other non-glucose metabolisms to meet their high energy
demand (Fig. 2).

Upregulated CD94/NKG2a and its ligand HLA-E in cancer
Another germline-like receptor that we found highly expressed in
cancer is the heterodimeric CD94/NKG2a.40 This receptor was
originally found on NK cells, with its first known function being to
limit NK cell cytotoxicity and prevent autoimmunity in healthy
tissue.121–125

Our group was able to establish CTA-specific CTL clones with
matched TCR, but different surface expression, such as with either
CD103 or CD94/NKG2a.40,108 Using the NKG2a+ and NKG2a− TCR-
matched CTA-specific CTLs in a recent study, we found that
exposure of CD94/NKG2a+ CTLs to HLA-E-enriched cancer cells
significantly impaired the degranulation-mediated cytotoxicity
and the production and secretion of inflammatory cytokines and
chemokines such as IFNγ and CCL-5.40 This was further demon-
strated in an ex vivo approach, using freshly isolated CD94/
NKG2a+ TILs from HLA-E-enriched tumor tissue. In addition to its
effect on killing, the enriched HLA-E and CD94/NKG2a interaction
significantly affected IL-2-dependent T-cell proliferation, in which
the production and secretion of IL-2 were detrimentally impaired
and the expression of IL-2 receptor alpha (CD25) was also reduced.
Similarly to previous studies, however, the use of anti-NKG2a can
reverse the negative effect of NKG2a on antigen-specific CTL
activities.40,126,127

This mechanism is mediated through CD94/NKG2a interaction
with the nonclassical MHC class Ib molecule, HLA-E on normal
cells. In contrast to the MHC class Ia, numerous studies have now

Fig. 2 Characteristics of CD103+ CTA-specific CTLs. Patient circulation-derived CTA-specific CD103+ CTLs exhibit self-production of TGF-β1 in
its active form, which is potentially recognized by self-TGFR, mediating the self-maintenance of CD103 expression. This unique T-cell
population also has elevated glucose consumption over time, and mediates faster recognition and killing of individual cancer cells. The
presence and interaction between CD103 and its ligand E-cadherin on cancer cells would support the faster recognition. However, the
presence or absence of PD-1 and its interaction with PD-L1 on cancer cells might influence the antitumor T-cell responses
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found that HLA-E as well as HLA-G are enriched in various types
of cancer.128–131 Tumors with either upregulated HLA-E or dually
upregulated HLA-E and HLA-G are associated with poorer
clinical outcome in patients.129 Importantly, our group recently
demonstrated a significant correlation between HLA-E-enriched
tumors with CD94/NKG2a-enriched TILs, in four different cancer
types.40 This suggest that CD94/NKG2a and HLA-E could
negatively affect antitumor TILs responses. A recent phase II
clinical trial using anti-NKG2a and anti-EGFR to treat head-and-
neck cancer patients showed an improved overall response rate
in the majority of patients treated, further highlighting the
potential of HLA-E and NKG2a as cancer immunotherapy target
combination.126 However, it was unclear the mechanisms by
which HLA-E and CD94/NKG2a could interfere with the
antitumor CTL responses.
Overall, these examples of germline-like receptors such as NKG2a

and CD103 highlight the significance of identifying and exploring
germline-like receptors, particularly of cancer-specific T cells.

CYTOKINE DEFECT AND THE IMPLICATION ON
IDENTIFICATION OF CANCER-SPECIFIC CTLS IN PATIENTS
Alongside directed cytotoxicity, CTLs function as to produce
important inflammatory cytokines such as IFNγ and TNFα. IFNγ
was first discovered to interfere with viral replication in host, and
the activation of IFNγ receptor-mediated JAK1/STAT-1 signaling
enables the formation of immunoproteasome and the expression
of antigen processing machinery-associated genes such as TAP
and tapasin on target cells.132–135 In contrast, TNFα ligation to TNF
receptors 1 and 2 promotes receptor-ligand-mediated apoptosis
events and prevents the expression of antiapoptotic factors such
as Bcl-2.136,137

In cancer, preclinical studies using IFNγ-deficient tumor bearing
murine model demonstrated reduced migration of activated
T cells into the tumor sites, with enhanced tumor
progression.138,139 Surprisingly, a recent study in our group found
a sizeable numbers of SSX-2-specific CTL clones from a cancer
patient that lack any IFNγ mRNA and protein expression.140 These
IFNγ− CTL clones, however, have normal production of TNFα and
other cytokines. In addition to these clones, a sizeable portion of
short-term expanded NY-ESO-1-specific and SSX-2-specific CTL
lines from two other cancer patients exhibited hypermethylation
of their IFNγ gene promoter. DNA hypermethylation prevents the
recruitment of essential DNA transcription machinery proteins
such as DNA polymerase onto the gene, which can limit the level
of specific DNA transcription and protein synthesis in a cell.141,142

The inaccessibility to the IFNγ gene promoter can therefore result
in a dysregulated cytokine production and contribute to an
ineffective antitumor CTA-specific CTL responses. In addition to
IFNγ, other cytokines deficiency in tandem may also be exhibited
and be detrimental to the antitumor responses of CTA-
specific CTLs.
Current methods to identify cancer-specific CTLs rely on the IFNγ

expression and production following stimulation, such as by using
intracellular cytokine assay and enzyme-linked immunosorbent
assay.139,143,144 Our group has recently demonstrated a certain
portion of CTA-specific CTLs could be deficient in their IFNγ
expression.140 This suggest that the commonly used techniques
might have overlooked a great proportion of CTA-specific CTLs and
could potentially lead to unintended biases in cancer-specific T cells
analysis. It is therefore important that more diverse methods that
can detect multiple cytokines be considered for a proper identifica-
tion and analysis of CTA-specific CTLs from cancer patients.

CONCLUDING REMARKS
Optimal cancer-specific CTL function is determined by antigen
sensitivity, which is influenced by TCR affinity to different tumor

antigens peptide loaded onto MHC class Ia molecules and/or
nonclassical MHC molecules such as HLA-E. In contrast to MHC
class Ia molecules, HLA-E are highly upregulated on cancer cells
and APCs in the cancer microenvironment. Furthermore, cancer-
specific CTL function is modulated by IRs and co-stimulatory
receptors that accumulate during disease progression. Distur-
bance of the fine balance of these factors alters optimal T-cell
function and contributes to cancer development and metastasis.
Understanding the quality and key features of human cancer
germline antigen-specific T cells in cancer patients and applying
this knowledge to immune therapy should be one of the key
priorities to consider. In comparison to exhausted T cells—which
are likely unrestorable—this approach may help to restore
dysfunctional as well as push ineffective immune cells to their
optimal condition—through manipulating TCR or co-receptors
of T cells (Fig. 1).
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