Abstract
In contrast to the previous belief that autoreactive B cells are eliminated from the normal repertoire of B cells, many autoreactive B cells actually escape clonal deletion and develop into mature B cells. These autoreactive B cells in healthy individuals perform some beneficial functions in the host and are homeostatically regulated by regulatory T and B cells or other mechanisms to prevent autoimmune diseases. Autoreactive B-1 cells constitutively produce polyreactive natural antibodies for tissue homeostasis. Recently, autoreactive follicular B cells were reported to participate actively in the germinal center reaction. Furthermore, the selection and usefulness of autoreactive marginal zone (MZ) B cells found in autoimmune diseases are not well understood, although the repertoire of MZ B-cell receptors (BCRs) is presumed to be biased to detect bacterial antigens. In this review, we discuss the autoreactive B-cell populations among all three major B-cell subsets and their regulation in immune responses and diseases.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Martin, F. & Chan, A. C. Pathogenic roles of B cells in human autoimmunity; insights from the clinic. Immunity 20, 517–527 (2004).
Koelsch, K. et al. Mature B cells class switched to IgD are autoreactive in healthy individuals. J. Clin. Investig 117, 1558–1565 (2007).
Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).
Ehrenstein, M. R. & Notley, C. A. The importance of natural IgM: scavenger, protector and regulator. Nat. Rev. Immunol. 10, 778–786 (2010).
Burnett, D. L. et al. Germinal center antibody mutation trajectories are determined by rapid self/foreign discrimination. Science 360, 223–226 (2018).
Hardy, R. R. & Hayakawa, K. Perspectives on fetal derived CD5+ B1 B cells. Eur. J. Immunol. 45, 2978–2984 (2015).
Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11, 34–46 (2011).
Herzog, S. & Jumaa, H. Self-recognition and clonal selection: autoreactivity drives the generation of B cells. Curr. Opin. Immunol. 24, 166–172 (2012).
Cancro, M. P. Signalling crosstalk in B cells: managing worth and need. Nat. Rev. Immunol. 9, 657–661 (2009).
Liu, Z. & Davidson, A. BAFF and selection of autoreactive B cells. Trends Immunol. 32, 388–394 (2011).
Cancro, M. P. & Kearney, J. F. B cell positive selection: road map to the primary repertoire. J. Immunol. 173, 15–19 (2004).
Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9, 767–777 (2009).
Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).
Mandik-Nayak, L., Racz, J., Sleckman, B. P. & Allen, P. M. Autoreactive marginal zone B cells are spontaneously activated but lymph node B cells require T cell help. J. Exp. Med. 203, 1985–1998 (2006).
Park, C. et al. Positive selection of type II collagen-reactive CD80(high) marginal zone B cells in DBA/1 mice. Clin. Immunol. 178, 64–73 (2017).
Kishi, Y. et al. Apoptotic marginal zone deletion of anti-Sm/ribonucleoprotein B cells. Proc. Natl Acad. Sci. USA 109, 7811–7816 (2012).
Palm, A. K. et al. Function and regulation of self-reactive marginal zone B cells in autoimmune arthritis. Cell Mol. Immunol. 12, 493–504 (2015).
Miyagawa-Hayashino, A. et al. Increase of MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of biopsied lymph nodes. Arthritis Res Ther. 20, 13 (2018).
Wong, W. K., Leem J., Deane C. M. Comparative analysis of the CDR loops of antigen receptors. BioRxiv. 0, 2019. https://doi.org/10.1101/709840.
Van Laethem, F., Tikhonova, A. N. & Singer, A. MHC restriction is imposed on a diverse T cell receptor repertoire by CD4 and CD8 co-receptors during thymic selection. Trends Immunol. 33, 437–441 (2012).
Davis, M. M. The evolutionary and structural ‘logic’ of antigen receptor diversity. Semin Immunol. 16, 239–243 (2004).
Weitzner, B. D., Dunbrack, R. L. & Gray, J. J. The origin of CDR H3 structural diversity. Structure 23, 302–311 (2015).
Wong, W. K., Leem, J. & Deane, C. M. Comparative analysis of the CDR loops of antigen receptors. Front Immunol. 10, 2454 (2019).
Eisen, H. N. & Chakraborty, A. K. Evolving concepts of specificity in immune reactions. Proc. Natl Acad. Sci. USA 107, 22373–22380 (2010).
Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).
Notkins, A. L. Polyreactivity of antibody molecules. Trends Immunol. 25, 174–179 (2004).
Zhou, Z. H. et al. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1, 51–61 (2007).
Köhler, F. et al. Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 29, 912–921 (2008).
Sethi, D. K., Agarwal, A., Manivel, V., Rao, K. V. & Salunke, D. M. Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response. Immunity 24, 429–438 (2006).
Manivel, V., Sahoo, N. C., Salunke, D. M. & Rao, K. V. Maturation of an antibody response is governed by modulations in flexibility of the antigen-combining site. Immunity 13, 611–620 (2000).
Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).
Melamed, D., Benschop, R. J., Cambier, J. C. & Nemazee, D. Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92, 173–182 (1998).
Dimitrov, J. D. et al. Antibody polyreactivity in health and disease: statu variabilis. J. Immunol. 191, 993–999 (2013).
Chen, Z. J. et al. Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur. J. Immunol. 28, 989–994 (1998).
Gunti, S. et al. Stimulation of toll-like receptors profoundly influences the titer of polyreactive antibodies in the circulation. Sci. Rep. 5, 15066 (2015).
ZHOU, Z. H. A. O.-H. U. A. & NOTKINS, A. L. Polyreactive antigen-binding B (PAB+) cells are widely distributed and the PAB+ population consists of both B-1+ and B-1- phenotypes. Clin. Exp. Immunol. 137, 88–100 (2004).
Tian, Q. et al. B cells expressing a natural polyreactive autoantibody have a distinct phenotype and are overrepresented in immunoglobulin heavy chain transgenic mice. J. Immunol. 177, 2412–2422 (2006).
Jones, D. D., DeIulio, G. A. & Winslow, G. M. Antigen-driven induction of polyreactive IgM during intracellular bacterial infection. J. Immunol. 189, 1440–1447 (2012).
Casali, P. & Schettino, E. W. Structure and function of natural antibodies. Curr. Top. Microbiol Immunol. 210, 167–179 (1996).
Lam, K. P., Kühn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).
Cyster, J. G. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 381, 325–328 (1996).
Kwak, K., Akkaya, M. & Pierce, S. K. B cell signaling in context. Nat. Immunol. 20, 963–969 (2019).
Myers, D. R., Zikherman, J. & Roose, J. P. Tonic signals: why do lymphocytes bother. Trends Immunol. 38, 844–857 (2017).
Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).
Gaudin, E. et al. Positive selection of B cells expressing low densities of self-reactive BCRs. J. Exp. Med 199, 843–853 (2004).
Übelhart, R. & Jumaa, H. Autoreactivity and the positive selection of B cells. Eur. J. Immunol. 45, 2971–2977 (2015).
Rawlings, D. J., Metzler, G., Wray-Dutra, M. & Jackson, S. W. Altered B cell signalling in autoimmunity. Nat. Rev. Immunol. 17, 421–436 (2017).
Mandik-Nayak, L., Bui, A., Noorchashm, H., Eaton, A. & Erikson, J. Regulation of anti-double-stranded DNA B cells in nonautoimmune mice: localization to the T-B interface of the splenic follicle. J. Exp. Med 186, 1257–1267 (1997).
Schram, B. R. et al. B cell receptor basal signaling regulates antigen-induced Ig light chain rearrangements. J. Immunol. 180, 4728–4741 (2008).
Zikherman, J., Parameswaran, R. & Weiss, A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489, 160–164 (2012).
Ashouri, J. F. & Weiss, A. Endogenous Nur77 is a specific indicator of antigen receptor signaling in human T and B cells. J. Immunol. 198, 657–668 (2017).
Steach, H. R. et al. Cross-reactivity with self-antigen tunes the functional potential of naive B cells specific for foreign antigens. J. Immunol. 204, 498–509 (2020).
Lund, F. E. & Randall, T. D. Effector and regulatory B cells: modulators of CD4(+) T cell immunity. Nat. Rev. Immunol. 10, 236–247 (2010).
Irish, J. M., Czerwinski, D. K., Nolan, G. P. & Levy, R. Kinetics of B cell receptor signaling in human B cell subsets mapped by phosphospecific flow cytometry. J. Immunol. 177, 1581–1589 (2006).
Depoil, D. et al. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat. Immunol. 9, 63–72 (2008).
Dasu, T., Sindhava, V., Clarke, S. H. & Bondada, S. CD19 signaling is impaired in murine peritoneal and splenic B-1 B lymphocytes. Mol. Immunol. 46, 2655–2665 (2009).
Haas, K. M., Poe, J. C., Steeber, D. A. & Tedder, T. F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23, 7–18 (2005).
Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).
Fairfax, K. A. et al. BAFF-driven autoimmunity requires CD19 expression. J. Autoimmun. 62, 1–10 (2015).
Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).
Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).
Rawlings, D. J., Schwartz, M. A., Jackson, S. W. & Meyer-Bahlburg, A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol. 12, 282–294 (2012).
Hua, Z. & Hou, B. TLR signaling in B-cell development and activation. Cell Mol. Immunol. 10, 103–106 (2013).
Lobo, P. I., Schlegel, K. H., Bajwa, A., Huang, L. & Okusa, M. D. Natural IgM and TLR agonists switch murine splenic Pan-B to “regulatory” cells that suppress ischemia-induced innate inflammation via regulating NKT-1 cells. Front Immunol. 8, 974 (2017).
Kolhatkar, N. S. et al. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott-Aldrich syndrome. J. Exp. Med 212, 1663–1677 (2015).
Sater, R. A., Sandel, P. C. & Monroe, J. G. B cell receptor-induced apoptosis in primary transitional murine B cells: signaling requirements and modulation by T cell help. Int Immunol. 10, 1673–1682 (1998).
Lesley, R., Kelly, L. M., Xu, Y. & Cyster, J. G. Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proc. Natl Acad. Sci. USA 103, 10717–10722 (2006).
Schwartz, M. A., Kolhatkar, N. S., Thouvenel, C., Khim, S. & Rawlings, D. J. CD4+ T cells and CD40 participate in selection and homeostasis of peripheral B cells. J. Immunol. 193, 3492–3502 (2014).
Menard, L. et al. Signaling lymphocytic activation molecule (SLAM)/SLAM-associated protein pathway regulates human B-cell tolerance. J. Allergy Clin. Immunol. 133, 1149–1161 (2014).
Nitschke, L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol. Rev. 230, 128–143 (2009).
Avalos, A. M., Uccellini, M. B., Lenert, P., Viglianti, G. A. & Marshak-Rothstein, A. FcγRIIB regulation of BCR/TLR-dependent autoreactive B-cell responses. Eur. J. Immunol. 40, 2692–2698 (2010).
Meffre, E. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann. N. Y. Acad. Sci. 1246, 1–10 (2011).
Todoric, K., Koontz, J. B., Mattox, D. & Tarrant, T. K. Autoimmunity in Immunodeficiency. Curr. Allergy Asthma Rep. 13, 361–370 (2013).
Sng, J. et al. AIRE expression controls the peripheral selection of autoreactive B cells. Sci. Immunol. 4, eaav6778 (2019).
Nemazee, D. Receptor editing in lymphocyte development and central tolerance. Nat. Rev. Immunol. 6, 728–740 (2006).
Goodnow, C. C., Sprent, J., Fazekas de St Groth, B. & Vinuesa, C. G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).
Horikawa, M. et al. Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J. Immunol. 190, 1158–1168 (2013).
Sindhava, V., Woodman, M. E., Stevenson, B. & Bondada, S. Interleukin-10 mediated autoregulation of murine B-1 B-cells and its role in Borrelia hermsii infection. PLoS ONE 5, e11445 (2010).
Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).
Lino, A. C. et al. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells. Immunity 49, 120–133.e9 (2018).
Maseda, D. et al. Regulatory B10 cells differentiate into antibody-secreting cells after transient IL-10 production in vivo. J. Immunol. 188, 1036–1048 (2012).
Chen, Y. et al. SHIP-1 deficiency in AID(+) B cells leads to the impaired function of B10 cells with spontaneous autoimmunity. J. Immunol. 199, 3063–3073 (2017).
Lam, W. Y. et al. Mitochondrial pyruvate import promotes long-term survival of antibody-secreting plasma cells. Immunity 45, 60–73 (2016).
Lin, F.-R. et al. ASK1 promotes apoptosis of normal and malignant plasma cells. Blood 120, 1039–1047 (2012).
Crow, M. K. Type I interferon in the pathogenesis of lupus. J. Immunol. 192, 5459–5468 (2014).
Berberich, S., Forster, R. & Pabst, O. The peritoneal micromilieu commits B cells to home to body cavities and the small intestine. Blood 109, 4627–4634 (2007).
Berberich, S. et al. Differential molecular and anatomical basis for B cell migration into the peritoneal cavity and omental milky spots. J. Immunol. 180, 2196–2203 (2008).
Baumgarth, N. B-1 cell heterogeneity and the regulation of natural and antigen-induced IgM production. Front Immunol. 7, 324 (2016).
Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 (1999).
Cruz-Leal, Y. et al. Role of B-1 cells in the immune response against an antigen encapsulated into phosphatidylcholine-containing liposomes. Int Immunol. 26, 427–437 (2014).
Zhong, X., Tumang, J. R., Gao, W., Bai, C. & Rothstein, T. L. PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur. J. Immunol. 37, 2405–2410 (2007).
Karvonen, J., Päivänsalo, M., Kesäniemi, Y. A. & Hörkkö, S. Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation 108, 2107–2112 (2003).
Rothstein, T. L. & Quach, T. D. The human counterpart of mouse B-1 cells. Ann. N. Y Acad. Sci. 1362, 143–152 (2015).
Pashov, A. et al. Diagnostic profiling of the human public IgM repertoire with scalable mimotope libraries. Front Immunol. 10, 2796 (2019).
Hodgkin, P. D. An antigen valence theory to explain the evolution and organization of the humoral immune response. Immunol. Cell Biol. 75, 604–618 (1997).
Shima, H. et al. Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int Immunol. 22, 149–156 (2010).
Litvack, M. L., Post, M. & Palaniyar, N. IgM promotes the clearance of small particles and apoptotic microparticles by macrophages. PLoS ONE 6, e17223 (2011).
Kaveri, S. V., Silverman, G. J. & Bayry, J. Natural IgM in immune equilibrium and harnessing their therapeutic potential. J. Immunol. 188, 939–945 (2012).
Margry, B., Wieland, W. H., van Kooten, P. J., van Eden, W. & Broere, F. Peritoneal cavity B-1a cells promote peripheral CD4+ T-cell activation. Eur. J. Immunol. 43, 2317–2326 (2013).
Sindhava, V. J. & Bondada, S. Multiple regulatory mechanisms control B-1 B cell activation. Front Immunol. 3, 372 (2012).
Moon, H. et al. Early development in the peritoneal cavity of CD49dhigh Th1 memory phenotype CD4+ T cells with enhanced B cell helper activity. J. Immunol. 195, 564–575 (2015).
Lee, J.-G. et al. Identification of human B-1 helper T cells with a Th1-like memory phenotype and high integrin CD49d expression. Front Immunol. 9, 1617 (2018).
Ha, S. A. et al. Regulation of B1 cell migration by signals through toll-like receptors. J. Exp. Med 203, 2541–2550 (2006).
Choi, Y. S. & Baumgarth, N. Dual role for B-1a cells in immunity to influenza virus infection. J. Exp. Med 205, 3053–3064 (2008).
Moon, H., Lee, J. G., Shin, S. H. & Kim, T. J. LPS-induced migration of peritoneal B-1 cells is associated with upregulation of CXCR4 and increased migratory sensitivity to CXCL12. J. Korean Med Sci. 27, 27–35 (2012).
Rauch, P. J. et al. Innate response activator B cells protect against microbial sepsis. Science 335, 597–601 (2012).
Duan, B. & Morel, L. Role of B-1a cells in autoimmunity. Autoimmun. Rev. 5, 403–408 (2006).
Zhong, X. et al. A novel subpopulation of B-1 cells is enriched with autoreactivity in normal and lupus-prone mice. Arthritis Rheum. 60, 3734–3743 (2009).
Cambier, J. C., Gauld, S. B., Merrell, K. T. & Vilen, B. J. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat. Rev. Immunol. 7, 633–643 (2007).
Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science 274, 1906–1909 (1996).
DeFranco, A. L., Chan, V. W. & Lowell, C. A. Positive and negative roles of the tyrosine kinase Lyn in B cell function. Semin Immunol. 10, 299–307 (1998).
Sen, G., Bikah, G., Venkataraman, C. & Bondada, S. Negative regulation of antigen receptor-mediated signaling by constitutive association of CD5 with the SHP-1 protein tyrosine phosphatase in B-1 B cells. Eur. J. Immunol. 29, 3319–3328 (1999).
Jellusova, J. et al. Siglec-G regulates B1 cell survival and selection. J. Immunol. 185, 3277–3284 (2010).
Berland, R. & Wortis, H. H. Normal B-1a cell development requires B cell-intrinsic NFATc1 activity. Proc. Natl Acad. Sci. USA 100, 13459–13464 (2003).
Cappione, A. et al. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Investig 115, 3205–3216 (2005).
Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).
Cyster, J. G., Hartley, S. B. & Goodnow, C. C. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371, 389–395 (1994).
Lee, J. G. et al. Reversible expression of CD138 on mature follicular B cells is downregulated by IL-4. Immunol. Lett. 156, 38–45 (2013).
Sabouri, Z. et al. IgD attenuates the IgM-induced anergy response in transitional and mature B cells. Nat. Commun. 7, 13381 (2016).
Bonami, R. H. et al. Bruton’s tyrosine kinase promotes persistence of mature anti-insulin B cells. J. Immunol. 192, 1459–1470 (2014).
Kil, L. P. et al. Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119, 3744–3756 (2012).
Kara, E. E. & Nussenzweig, M. C. Redemption for self-reactive antibodies. Science 360, 152–153 (2018).
Reed, J. H., Jackson, J., Christ, D. & Goodnow, C. C. Clonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunization. J. Exp. Med 213, 1255–1265 (2016).
Noviski, M. et al. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. Elife 7, e35074 (2018).
Yuseff, M. I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35, 361–374 (2011).
Li, J. et al. The coordination between B cell receptor signaling and the actin cytoskeleton during B cell activation. Front Immunol. 9, 3096 (2018).
Zhao, X. et al. Fc receptor–like 1 intrinsically recruits c-Abl to enhance B cell activation and function. Sci. Adv. 5, eaaw0315 (2019).
Khalil, A. M., Cambier, J. C. & Shlomchik, M. J. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336, 1178–1181 (2012).
Martin, F. & Kearney, J. F. Marginal-zone B cells. Nat. Rev. Immunol. 2, 323–335 (2002).
Weller, S. et al. Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+ IgD+ CD27+ B cell repertoire in infants. J. Exp. Med 205, 1331–1342 (2008).
Attanavanich, K. & Kearney, J. F. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J. Immunol. 172, 803–811 (2004).
Sang, A., Zheng, Y. Y. & Morel, L. Contributions of B cells to lupus pathogenesis. Mol. Immunol. 62, 329–338 (2014).
Yang, Y. et al. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. Elife 4, e09083 (2015).
Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12, 39–49 (2000).
Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).
Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, andCD21. Immunity 14, 603–615 (2001).
Samardzic, T. et al. Reduction of marginal zone B cells in CD22-deficient mice. Eur. J. Immunol. 32, 561–567 (2002).
Makowska, A., Faizunnessa, N. N., Anderson, P., Midtvedt, T. & Cardell, S. CD1high B cells: a population of mixed origin. Eur. J. Immunol. 29, 3285–3294 (1999).
Vaeth, M. et al. Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression. J. Exp. Med 211, 545–561 (2014).
Zhang, Z. et al. Notch-RBP-J-independent marginal zone B cell development in IgH transgenic mice with VH derived from a natural polyreactive antibody. PLoS ONE 7, e38894 (2012).
Hao, Z. & Rajewsky, K. Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J. Exp. Med 194, 1151–1164 (2001).
Carey, J. B., Moffatt-Blue, C. S., Watson, L. C., Gavin, A. L. & Feeney, A. J. Repertoire-based selection into the marginal zone compartment during B cell development. J. Exp. Med 205, 2043–2052 (2008).
Kanayama, N., Cascalho, M. & Ohmori, H. Analysis of marginal zone B cell development in the mouse with limited B cell diversity: role of the antigen receptor signals in the recruitment of B cells to the marginal zone. J. Immunol. 174, 1438–1445 (2005).
Gies, V. et al. Phenotyping of autoreactive B cells with labeled nucleosomes in 56R transgenic mice. Sci. Rep. 7, 13232 (2017).
Hofmann, K., Clauder, A. K. & Manz, R. A. Targeting B cells and plasma cells in autoimmune diseases. Front Immunol. 9, 835 (2018).
Rickert, R. C. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat. Rev. Immunol. 13, 578–591 (2013).
Seda, V. & Mraz, M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur. J. Haematol. 94, 193–205 (2015).
Vukelic, M., Li, Y. & Kyttaris, V. C. Novel treatments in lupus. Front Immunol. 9, 2658 (2018).
Liu, W., Tolar, P., Song, W. & Kim, T. J. Editorial: BCR signaling and B cell activation. Front Immunol. 11, 45 (2020).
Gürcan, H. M. et al. A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol. 9, 10–25 (2009).
Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med 358, 676–688 (2008).
Yu, L. et al. Rituximab selectively suppresses specific islet antibodies. Diabetes 60, 2560–2565 (2011).
Sellam, J. et al. B cell activation biomarkers as predictive factors for the response to rituximab in rheumatoid arthritis: a six-month, national, multicenter, open-label study. Arthritis Rheum. 63, 933–938 (2011).
Huang, H., Benoist, C. & Mathis, D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc. Natl Acad. Sci. USA 107, 4658–4663 (2010).
Chang, H. D. et al. Pathogenic memory plasma cells in autoimmunity. Curr. Opin. Immunol. 61, 86–91 (2019).
Musette, P. & Bouaziz, J. D. B cell modulation strategies in autoimmune diseases: new concepts. Front Immunol. 9, 622 (2018).
Ahuja, A. et al. An acquired defect in IgG-dependent phagocytosis explains the impairment in antibody-mediated cellular depletion in Lupus. J. Immunol. 187, 3888–3894 (2011).
Gomez Mendez, L. M. et al. Peripheral blood B cell depletion after rituximab and complete response in lupus nephritis. Clin. J. Am. Soc. Nephrol. 13, 1502–1509 (2018).
Acknowledgements
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2019R1A2C2006717).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Lee, S., Ko, Y. & Kim, T.J. Homeostasis and regulation of autoreactive B cells. Cell Mol Immunol 17, 561–569 (2020). https://doi.org/10.1038/s41423-020-0445-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41423-020-0445-4
Keywords
This article is cited by
-
The STING inhibitor (ISD-017) reduces glomerulonephritis in 129.B6.Fcgr2b-deficient mice
Scientific Reports (2024)
-
Two distinct subpopulations of marginal zone B cells exhibit differential antibody-producing capacities and radioresistance
Cellular & Molecular Immunology (2024)
-
MCP-1 and IL-4 encapsulated hydrogel particles with macrophages enrichment and polarization capabilities for systemic lupus erythematosus treatment
Nano Research (2024)
-
The characters of antibodies against PLA2R in healthy individuals and in the patient with PLA2R associated membranous nephropathy
European Journal of Medical Research (2023)
-
ARID3a from the ARID family: structure, role in autoimmune diseases and drug discovery
Acta Pharmacologica Sinica (2023)