Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Homeostasis and regulation of autoreactive B cells

Abstract

In contrast to the previous belief that autoreactive B cells are eliminated from the normal repertoire of B cells, many autoreactive B cells actually escape clonal deletion and develop into mature B cells. These autoreactive B cells in healthy individuals perform some beneficial functions in the host and are homeostatically regulated by regulatory T and B cells or other mechanisms to prevent autoimmune diseases. Autoreactive B-1 cells constitutively produce polyreactive natural antibodies for tissue homeostasis. Recently, autoreactive follicular B cells were reported to participate actively in the germinal center reaction. Furthermore, the selection and usefulness of autoreactive marginal zone (MZ) B cells found in autoimmune diseases are not well understood, although the repertoire of MZ B-cell receptors (BCRs) is presumed to be biased to detect bacterial antigens. In this review, we discuss the autoreactive B-cell populations among all three major B-cell subsets and their regulation in immune responses and diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martin, F. & Chan, A. C. Pathogenic roles of B cells in human autoimmunity; insights from the clinic. Immunity 20, 517–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Koelsch, K. et al. Mature B cells class switched to IgD are autoreactive in healthy individuals. J. Clin. Investig 117, 1558–1565 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Ehrenstein, M. R. & Notley, C. A. The importance of natural IgM: scavenger, protector and regulator. Nat. Rev. Immunol. 10, 778–786 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Burnett, D. L. et al. Germinal center antibody mutation trajectories are determined by rapid self/foreign discrimination. Science 360, 223–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hardy, R. R. & Hayakawa, K. Perspectives on fetal derived CD5+ B1 B cells. Eur. J. Immunol. 45, 2978–2984 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11, 34–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Herzog, S. & Jumaa, H. Self-recognition and clonal selection: autoreactivity drives the generation of B cells. Curr. Opin. Immunol. 24, 166–172 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Cancro, M. P. Signalling crosstalk in B cells: managing worth and need. Nat. Rev. Immunol. 9, 657–661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, Z. & Davidson, A. BAFF and selection of autoreactive B cells. Trends Immunol. 32, 388–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cancro, M. P. & Kearney, J. F. B cell positive selection: road map to the primary repertoire. J. Immunol. 173, 15–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9, 767–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Mandik-Nayak, L., Racz, J., Sleckman, B. P. & Allen, P. M. Autoreactive marginal zone B cells are spontaneously activated but lymph node B cells require T cell help. J. Exp. Med. 203, 1985–1998 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park, C. et al. Positive selection of type II collagen-reactive CD80(high) marginal zone B cells in DBA/1 mice. Clin. Immunol. 178, 64–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Kishi, Y. et al. Apoptotic marginal zone deletion of anti-Sm/ribonucleoprotein B cells. Proc. Natl Acad. Sci. USA 109, 7811–7816 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Palm, A. K. et al. Function and regulation of self-reactive marginal zone B cells in autoimmune arthritis. Cell Mol. Immunol. 12, 493–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyagawa-Hayashino, A. et al. Increase of MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of biopsied lymph nodes. Arthritis Res Ther. 20, 13 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wong, W. K., Leem J., Deane C. M. Comparative analysis of the CDR loops of antigen receptors. BioRxiv. 0, 2019. https://doi.org/10.1101/709840.

  20. Van Laethem, F., Tikhonova, A. N. & Singer, A. MHC restriction is imposed on a diverse T cell receptor repertoire by CD4 and CD8 co-receptors during thymic selection. Trends Immunol. 33, 437–441 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Davis, M. M. The evolutionary and structural ‘logic’ of antigen receptor diversity. Semin Immunol. 16, 239–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Weitzner, B. D., Dunbrack, R. L. & Gray, J. J. The origin of CDR H3 structural diversity. Structure 23, 302–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wong, W. K., Leem, J. & Deane, C. M. Comparative analysis of the CDR loops of antigen receptors. Front Immunol. 10, 2454 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eisen, H. N. & Chakraborty, A. K. Evolving concepts of specificity in immune reactions. Proc. Natl Acad. Sci. USA 107, 22373–22380 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Notkins, A. L. Polyreactivity of antibody molecules. Trends Immunol. 25, 174–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, Z. H. et al. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1, 51–61 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Köhler, F. et al. Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 29, 912–921 (2008).

    Article  PubMed  CAS  Google Scholar 

  29. Sethi, D. K., Agarwal, A., Manivel, V., Rao, K. V. & Salunke, D. M. Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response. Immunity 24, 429–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Manivel, V., Sahoo, N. C., Salunke, D. M. & Rao, K. V. Maturation of an antibody response is governed by modulations in flexibility of the antigen-combining site. Immunity 13, 611–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Melamed, D., Benschop, R. J., Cambier, J. C. & Nemazee, D. Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92, 173–182 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Dimitrov, J. D. et al. Antibody polyreactivity in health and disease: statu variabilis. J. Immunol. 191, 993–999 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, Z. J. et al. Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur. J. Immunol. 28, 989–994 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Gunti, S. et al. Stimulation of toll-like receptors profoundly influences the titer of polyreactive antibodies in the circulation. Sci. Rep. 5, 15066 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. ZHOU, Z. H. A. O.-H. U. A. & NOTKINS, A. L. Polyreactive antigen-binding B (PAB+) cells are widely distributed and the PAB+ population consists of both B-1+ and B-1- phenotypes. Clin. Exp. Immunol. 137, 88–100 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian, Q. et al. B cells expressing a natural polyreactive autoantibody have a distinct phenotype and are overrepresented in immunoglobulin heavy chain transgenic mice. J. Immunol. 177, 2412–2422 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Jones, D. D., DeIulio, G. A. & Winslow, G. M. Antigen-driven induction of polyreactive IgM during intracellular bacterial infection. J. Immunol. 189, 1440–1447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Casali, P. & Schettino, E. W. Structure and function of natural antibodies. Curr. Top. Microbiol Immunol. 210, 167–179 (1996).

    CAS  PubMed  Google Scholar 

  40. Lam, K. P., Kühn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Cyster, J. G. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 381, 325–328 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Kwak, K., Akkaya, M. & Pierce, S. K. B cell signaling in context. Nat. Immunol. 20, 963–969 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Myers, D. R., Zikherman, J. & Roose, J. P. Tonic signals: why do lymphocytes bother. Trends Immunol. 38, 844–857 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaudin, E. et al. Positive selection of B cells expressing low densities of self-reactive BCRs. J. Exp. Med 199, 843–853 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Übelhart, R. & Jumaa, H. Autoreactivity and the positive selection of B cells. Eur. J. Immunol. 45, 2971–2977 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Rawlings, D. J., Metzler, G., Wray-Dutra, M. & Jackson, S. W. Altered B cell signalling in autoimmunity. Nat. Rev. Immunol. 17, 421–436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mandik-Nayak, L., Bui, A., Noorchashm, H., Eaton, A. & Erikson, J. Regulation of anti-double-stranded DNA B cells in nonautoimmune mice: localization to the T-B interface of the splenic follicle. J. Exp. Med 186, 1257–1267 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schram, B. R. et al. B cell receptor basal signaling regulates antigen-induced Ig light chain rearrangements. J. Immunol. 180, 4728–4741 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Zikherman, J., Parameswaran, R. & Weiss, A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489, 160–164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ashouri, J. F. & Weiss, A. Endogenous Nur77 is a specific indicator of antigen receptor signaling in human T and B cells. J. Immunol. 198, 657–668 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Steach, H. R. et al. Cross-reactivity with self-antigen tunes the functional potential of naive B cells specific for foreign antigens. J. Immunol. 204, 498–509 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Lund, F. E. & Randall, T. D. Effector and regulatory B cells: modulators of CD4(+) T cell immunity. Nat. Rev. Immunol. 10, 236–247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Irish, J. M., Czerwinski, D. K., Nolan, G. P. & Levy, R. Kinetics of B cell receptor signaling in human B cell subsets mapped by phosphospecific flow cytometry. J. Immunol. 177, 1581–1589 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Depoil, D. et al. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat. Immunol. 9, 63–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Dasu, T., Sindhava, V., Clarke, S. H. & Bondada, S. CD19 signaling is impaired in murine peritoneal and splenic B-1 B lymphocytes. Mol. Immunol. 46, 2655–2665 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Haas, K. M., Poe, J. C., Steeber, D. A. & Tedder, T. F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23, 7–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Fairfax, K. A. et al. BAFF-driven autoimmunity requires CD19 expression. J. Autoimmun. 62, 1–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Rawlings, D. J., Schwartz, M. A., Jackson, S. W. & Meyer-Bahlburg, A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol. 12, 282–294 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hua, Z. & Hou, B. TLR signaling in B-cell development and activation. Cell Mol. Immunol. 10, 103–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Lobo, P. I., Schlegel, K. H., Bajwa, A., Huang, L. & Okusa, M. D. Natural IgM and TLR agonists switch murine splenic Pan-B to “regulatory” cells that suppress ischemia-induced innate inflammation via regulating NKT-1 cells. Front Immunol. 8, 974 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kolhatkar, N. S. et al. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott-Aldrich syndrome. J. Exp. Med 212, 1663–1677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sater, R. A., Sandel, P. C. & Monroe, J. G. B cell receptor-induced apoptosis in primary transitional murine B cells: signaling requirements and modulation by T cell help. Int Immunol. 10, 1673–1682 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Lesley, R., Kelly, L. M., Xu, Y. & Cyster, J. G. Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proc. Natl Acad. Sci. USA 103, 10717–10722 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Schwartz, M. A., Kolhatkar, N. S., Thouvenel, C., Khim, S. & Rawlings, D. J. CD4+ T cells and CD40 participate in selection and homeostasis of peripheral B cells. J. Immunol. 193, 3492–3502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Menard, L. et al. Signaling lymphocytic activation molecule (SLAM)/SLAM-associated protein pathway regulates human B-cell tolerance. J. Allergy Clin. Immunol. 133, 1149–1161 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Nitschke, L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol. Rev. 230, 128–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Avalos, A. M., Uccellini, M. B., Lenert, P., Viglianti, G. A. & Marshak-Rothstein, A. FcγRIIB regulation of BCR/TLR-dependent autoreactive B-cell responses. Eur. J. Immunol. 40, 2692–2698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Meffre, E. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann. N. Y. Acad. Sci. 1246, 1–10 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Todoric, K., Koontz, J. B., Mattox, D. & Tarrant, T. K. Autoimmunity in Immunodeficiency. Curr. Allergy Asthma Rep. 13, 361–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sng, J. et al. AIRE expression controls the peripheral selection of autoreactive B cells. Sci. Immunol. 4, eaav6778 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nemazee, D. Receptor editing in lymphocyte development and central tolerance. Nat. Rev. Immunol. 6, 728–740 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Goodnow, C. C., Sprent, J., Fazekas de St Groth, B. & Vinuesa, C. G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Horikawa, M. et al. Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J. Immunol. 190, 1158–1168 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Sindhava, V., Woodman, M. E., Stevenson, B. & Bondada, S. Interleukin-10 mediated autoregulation of murine B-1 B-cells and its role in Borrelia hermsii infection. PLoS ONE 5, e11445 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Lino, A. C. et al. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells. Immunity 49, 120–133.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maseda, D. et al. Regulatory B10 cells differentiate into antibody-secreting cells after transient IL-10 production in vivo. J. Immunol. 188, 1036–1048 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, Y. et al. SHIP-1 deficiency in AID(+) B cells leads to the impaired function of B10 cells with spontaneous autoimmunity. J. Immunol. 199, 3063–3073 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Lam, W. Y. et al. Mitochondrial pyruvate import promotes long-term survival of antibody-secreting plasma cells. Immunity 45, 60–73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lin, F.-R. et al. ASK1 promotes apoptosis of normal and malignant plasma cells. Blood 120, 1039–1047 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Crow, M. K. Type I interferon in the pathogenesis of lupus. J. Immunol. 192, 5459–5468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Berberich, S., Forster, R. & Pabst, O. The peritoneal micromilieu commits B cells to home to body cavities and the small intestine. Blood 109, 4627–4634 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Berberich, S. et al. Differential molecular and anatomical basis for B cell migration into the peritoneal cavity and omental milky spots. J. Immunol. 180, 2196–2203 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Baumgarth, N. B-1 cell heterogeneity and the regulation of natural and antigen-induced IgM production. Front Immunol. 7, 324 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Cruz-Leal, Y. et al. Role of B-1 cells in the immune response against an antigen encapsulated into phosphatidylcholine-containing liposomes. Int Immunol. 26, 427–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Zhong, X., Tumang, J. R., Gao, W., Bai, C. & Rothstein, T. L. PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur. J. Immunol. 37, 2405–2410 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Karvonen, J., Päivänsalo, M., Kesäniemi, Y. A. & Hörkkö, S. Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation 108, 2107–2112 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Rothstein, T. L. & Quach, T. D. The human counterpart of mouse B-1 cells. Ann. N. Y Acad. Sci. 1362, 143–152 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Pashov, A. et al. Diagnostic profiling of the human public IgM repertoire with scalable mimotope libraries. Front Immunol. 10, 2796 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hodgkin, P. D. An antigen valence theory to explain the evolution and organization of the humoral immune response. Immunol. Cell Biol. 75, 604–618 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Shima, H. et al. Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int Immunol. 22, 149–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Litvack, M. L., Post, M. & Palaniyar, N. IgM promotes the clearance of small particles and apoptotic microparticles by macrophages. PLoS ONE 6, e17223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kaveri, S. V., Silverman, G. J. & Bayry, J. Natural IgM in immune equilibrium and harnessing their therapeutic potential. J. Immunol. 188, 939–945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Margry, B., Wieland, W. H., van Kooten, P. J., van Eden, W. & Broere, F. Peritoneal cavity B-1a cells promote peripheral CD4+ T-cell activation. Eur. J. Immunol. 43, 2317–2326 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Sindhava, V. J. & Bondada, S. Multiple regulatory mechanisms control B-1 B cell activation. Front Immunol. 3, 372 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Moon, H. et al. Early development in the peritoneal cavity of CD49dhigh Th1 memory phenotype CD4+ T cells with enhanced B cell helper activity. J. Immunol. 195, 564–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, J.-G. et al. Identification of human B-1 helper T cells with a Th1-like memory phenotype and high integrin CD49d expression. Front Immunol. 9, 1617 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ha, S. A. et al. Regulation of B1 cell migration by signals through toll-like receptors. J. Exp. Med 203, 2541–2550 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Choi, Y. S. & Baumgarth, N. Dual role for B-1a cells in immunity to influenza virus infection. J. Exp. Med 205, 3053–3064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Moon, H., Lee, J. G., Shin, S. H. & Kim, T. J. LPS-induced migration of peritoneal B-1 cells is associated with upregulation of CXCR4 and increased migratory sensitivity to CXCL12. J. Korean Med Sci. 27, 27–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Rauch, P. J. et al. Innate response activator B cells protect against microbial sepsis. Science 335, 597–601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Duan, B. & Morel, L. Role of B-1a cells in autoimmunity. Autoimmun. Rev. 5, 403–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Zhong, X. et al. A novel subpopulation of B-1 cells is enriched with autoreactivity in normal and lupus-prone mice. Arthritis Rheum. 60, 3734–3743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cambier, J. C., Gauld, S. B., Merrell, K. T. & Vilen, B. J. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat. Rev. Immunol. 7, 633–643 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science 274, 1906–1909 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. DeFranco, A. L., Chan, V. W. & Lowell, C. A. Positive and negative roles of the tyrosine kinase Lyn in B cell function. Semin Immunol. 10, 299–307 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Sen, G., Bikah, G., Venkataraman, C. & Bondada, S. Negative regulation of antigen receptor-mediated signaling by constitutive association of CD5 with the SHP-1 protein tyrosine phosphatase in B-1 B cells. Eur. J. Immunol. 29, 3319–3328 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Jellusova, J. et al. Siglec-G regulates B1 cell survival and selection. J. Immunol. 185, 3277–3284 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Berland, R. & Wortis, H. H. Normal B-1a cell development requires B cell-intrinsic NFATc1 activity. Proc. Natl Acad. Sci. USA 100, 13459–13464 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Cappione, A. et al. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Investig 115, 3205–3216 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  CAS  PubMed  Google Scholar 

  117. Cyster, J. G., Hartley, S. B. & Goodnow, C. C. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371, 389–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Lee, J. G. et al. Reversible expression of CD138 on mature follicular B cells is downregulated by IL-4. Immunol. Lett. 156, 38–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Sabouri, Z. et al. IgD attenuates the IgM-induced anergy response in transitional and mature B cells. Nat. Commun. 7, 13381 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bonami, R. H. et al. Bruton’s tyrosine kinase promotes persistence of mature anti-insulin B cells. J. Immunol. 192, 1459–1470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kil, L. P. et al. Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119, 3744–3756 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Kara, E. E. & Nussenzweig, M. C. Redemption for self-reactive antibodies. Science 360, 152–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Reed, J. H., Jackson, J., Christ, D. & Goodnow, C. C. Clonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunization. J. Exp. Med 213, 1255–1265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Noviski, M. et al. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. Elife 7, e35074 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yuseff, M. I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35, 361–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Li, J. et al. The coordination between B cell receptor signaling and the actin cytoskeleton during B cell activation. Front Immunol. 9, 3096 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Zhao, X. et al. Fc receptor–like 1 intrinsically recruits c-Abl to enhance B cell activation and function. Sci. Adv. 5, eaaw0315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Khalil, A. M., Cambier, J. C. & Shlomchik, M. J. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336, 1178–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Martin, F. & Kearney, J. F. Marginal-zone B cells. Nat. Rev. Immunol. 2, 323–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Weller, S. et al. Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+ IgD+ CD27+ B cell repertoire in infants. J. Exp. Med 205, 1331–1342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Attanavanich, K. & Kearney, J. F. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J. Immunol. 172, 803–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Sang, A., Zheng, Y. Y. & Morel, L. Contributions of B cells to lupus pathogenesis. Mol. Immunol. 62, 329–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, Y. et al. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. Elife 4, e09083 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12, 39–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, andCD21. Immunity 14, 603–615 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Samardzic, T. et al. Reduction of marginal zone B cells in CD22-deficient mice. Eur. J. Immunol. 32, 561–567 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Makowska, A., Faizunnessa, N. N., Anderson, P., Midtvedt, T. & Cardell, S. CD1high B cells: a population of mixed origin. Eur. J. Immunol. 29, 3285–3294 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Vaeth, M. et al. Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression. J. Exp. Med 211, 545–561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, Z. et al. Notch-RBP-J-independent marginal zone B cell development in IgH transgenic mice with VH derived from a natural polyreactive antibody. PLoS ONE 7, e38894 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hao, Z. & Rajewsky, K. Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J. Exp. Med 194, 1151–1164 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Carey, J. B., Moffatt-Blue, C. S., Watson, L. C., Gavin, A. L. & Feeney, A. J. Repertoire-based selection into the marginal zone compartment during B cell development. J. Exp. Med 205, 2043–2052 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kanayama, N., Cascalho, M. & Ohmori, H. Analysis of marginal zone B cell development in the mouse with limited B cell diversity: role of the antigen receptor signals in the recruitment of B cells to the marginal zone. J. Immunol. 174, 1438–1445 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Gies, V. et al. Phenotyping of autoreactive B cells with labeled nucleosomes in 56R transgenic mice. Sci. Rep. 7, 13232 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Hofmann, K., Clauder, A. K. & Manz, R. A. Targeting B cells and plasma cells in autoimmune diseases. Front Immunol. 9, 835 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Rickert, R. C. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat. Rev. Immunol. 13, 578–591 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Seda, V. & Mraz, M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur. J. Haematol. 94, 193–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Vukelic, M., Li, Y. & Kyttaris, V. C. Novel treatments in lupus. Front Immunol. 9, 2658 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Liu, W., Tolar, P., Song, W. & Kim, T. J. Editorial: BCR signaling and B cell activation. Front Immunol. 11, 45 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gürcan, H. M. et al. A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol. 9, 10–25 (2009).

    Article  PubMed  CAS  Google Scholar 

  151. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Yu, L. et al. Rituximab selectively suppresses specific islet antibodies. Diabetes 60, 2560–2565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sellam, J. et al. B cell activation biomarkers as predictive factors for the response to rituximab in rheumatoid arthritis: a six-month, national, multicenter, open-label study. Arthritis Rheum. 63, 933–938 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Huang, H., Benoist, C. & Mathis, D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc. Natl Acad. Sci. USA 107, 4658–4663 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Chang, H. D. et al. Pathogenic memory plasma cells in autoimmunity. Curr. Opin. Immunol. 61, 86–91 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Musette, P. & Bouaziz, J. D. B cell modulation strategies in autoimmune diseases: new concepts. Front Immunol. 9, 622 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Ahuja, A. et al. An acquired defect in IgG-dependent phagocytosis explains the impairment in antibody-mediated cellular depletion in Lupus. J. Immunol. 187, 3888–3894 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gomez Mendez, L. M. et al. Peripheral blood B cell depletion after rituximab and complete response in lupus nephritis. Clin. J. Am. Soc. Nephrol. 13, 1502–1509 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2019R1A2C2006717).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Jin Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Ko, Y. & Kim, T.J. Homeostasis and regulation of autoreactive B cells. Cell Mol Immunol 17, 561–569 (2020). https://doi.org/10.1038/s41423-020-0445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0445-4

Keywords

This article is cited by

Search

Quick links