Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Virtual memory CD8+ T cells restrain the viral reservoir in HIV-1-infected patients with antiretroviral therapy through derepressing KIR-mediated inhibition

Abstract

The viral reservoir is the major hurdle in developing and establishing an HIV cure. Understanding factors affecting the size and decay of this reservoir is crucial for the development of therapeutic strategies. Recent work highlighted that CD8+ T cells are involved in the control of viral replication in ART-treated HIV-1-infected individuals, but how CD8+ T cells sense and restrict the HIV reservoir are not fully understood. Here, we demonstrate that a population of unconventional CD45RA+, PanKIR+, and/or NKG2A+ virtual memory CD8+ T cells (TVM cells), which confer rapid and robust protective immunity against pathogens, plays an important role in restraining the HIV DNA reservoir in HIV-1-infected patients with effective ART. In patients undergoing ART, TVM cells negatively correlate with HIV DNA and positively correlate with circulating IFN-α2 and IL-15. Moreover, TVM cells constitutively express high levels of cytotoxic granule components, including granzyme B, perforin and granulysin, and demonstrate the capability to control HIV replication through both cytolytic and noncytolytic mechanisms. Furthermore, by using an ex vivo system, we showed that HIV reactivation is effectively suppressed by TVM cells through KIR-mediated recognition. This study suggests that TVM cells are a promising target to predict posttreatment virological control and to design immune-based interventions to reduce the reservoir size in ART-treated HIV-1-infected individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Volberding, P. A. & Deeks, S. G. Antiretroviral therapy and management of HIV infection. Lancet 376, 49–62 (2010).

    PubMed  Google Scholar 

  2. Furtado, M. R. et al. Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N. Engl. J. Med. 340, 1614–1622 (1999).

    CAS  PubMed  Google Scholar 

  3. Williams, J. P. et al. HIV-1 DNA predicts disease progression and post-treatment virological control. Elife 3, e03821 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Graf, E. H. et al. Elite suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off HAART. PLoS Pathog. 7, e1001300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hocqueloux, L. et al. Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. Aids 24, 1598–1601 (2010).

    PubMed  Google Scholar 

  6. Cromer, D. et al. Modeling of antilatency treatment in HIV: what is the optimal duration of antiretroviral therapy-free HIV remission? J. Virol. 91, e01395–01317 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Davenport, M. P. et al. Functional cure of HIV: the scale of the challenge. Nat. Rev. Immunol. 19, 45 (2019).

    CAS  PubMed  Google Scholar 

  8. Collins, D. R., Gaiha, G. D. & Walker, B. D. CD8(+) T cells in HIV control, cure and prevention. Nat. Rev. Immunol. (2020). https://doi.org/10.1038/s41577-020-0274-9

  9. Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M. & Oldstone, M. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Koup, R. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Walker, B. D. & Xu, G. Y. Unravelling the mechanisms of durable control of HIV-1. Nat. Rev. Immunol. 13, 487–498 (2013).

    CAS  PubMed  Google Scholar 

  12. Migueles, S. A. et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 29, 1009–1021 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cartwright, E. K. et al. CD8+ lymphocytes are required for maintaining viral suppression in SIV-infected macaques treated with short-term antiretroviral therapy. Immunity 45, 656–668 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sáez-Cirión, A. et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 9, e1003211 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Keating, S. M. et al. Brief Report: HIV antibodies decline during antiretroviral therapy but remain correlated with HIV DNA and HIV-specific T-cell responses. JAIDS J. Acquired Immune Defic. Syndromes 81, 594–599 (2019).

    CAS  Google Scholar 

  16. Phillips, R. E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453 (1991).

    CAS  PubMed  Google Scholar 

  17. Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jones, R. B. et al. A subset of latency-reversing agents expose HIV-infected resting CD4+ T-cells to recognition by cytotoxic T-lymphocytes. PLoS Pathog. 12, e1005545 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Migueles, S. A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 3, 1061 (2002).

    CAS  PubMed  Google Scholar 

  20. Hersperger, A. R. et al. Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood 117, 3799–3808 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hersperger, A. R. et al. Perforin expression directly ex vivo by HIV-specific CD8+ T-cells is a correlate of HIV elite control. PLoS Pathog. 6, e1000917 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Folkvord, J. M., Armon, C. & Connick, E. Lymphoid follicles are sites of heightened human immunodeficiency virus type 1 (HIV-1) replication and reduced antiretroviral effector mechanisms. AIDS Res. Hum. Retroviruses 21, 363–370 (2005).

    CAS  PubMed  Google Scholar 

  23. Fukazawa, Y. et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat. Med. 21, 132 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, S.-H. et al. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J. Clin. Investig. 128, 876–889 (2018).

    PubMed  Google Scholar 

  25. Haluszczak, C. et al. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206, 435–448 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. White, J. T., Cross, E. W. & Kedl, R. M. Antigen-inexperienced memory CD8+ T cells: where they come from and why we need them. Nat. Rev. Immunol. 17, 391 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. White, J. T. et al. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 7, 11291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jacomet, F. et al. Evidence for eomesodermin‐expressing innate‐like CD8+ KIR/NKG2A+ T cells in human adults and cord blood samples. Eur. J. Immunol. 45, 1926–1933 (2015).

    CAS  PubMed  Google Scholar 

  29. Quinn, K. M. et al. Age-related decline in primary CD8+ T cell responses is associated with the development of senescence in virtual memory CD8+ T cells. Cell Rep. 23, 3512–3524 (2018).

    CAS  PubMed  Google Scholar 

  30. Hussain, T. & Quinn, K. M. Similar but different: virtual memory CD8 T cells as a memory‐like cell population. Immunol. Cell Biol. 97, 675–684 (2019).

    CAS  PubMed  Google Scholar 

  31. Ghanem, E. N. B., Nelson, C. C. & D’Orazio, S. E. T cell-intrinsic factors contribute to the differential ability of CD8+ T cells to rapidly secrete IFN-γ in the absence of antigen. J. Immunol. 186, 1703–1712 (2011).

    Google Scholar 

  32. Lanzer, K. G., Cookenham, T., Reiley, W. W. & Blackman, M. A. Virtual memory cells make a major contribution to the response of aged influenza-naïve mice to influenza virus infection. Immun. Ageing 15, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Rolot, M. et al. Helminth-induced IL-4 expands bystander memory CD8+ T cells for early control of viral infection. Nat. Commun. 9, 4516 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Lin, J. et al. Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. Mucosal Immunol. 12, 258 (2019).

    CAS  PubMed  Google Scholar 

  35. Barbarin, A. et al. Phenotype of NK-like CD8(+) T cells with innate features in humans and their relevance in cancer diseases. Front. Immunol. 8, 316 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Swanson, B. J., Murakami, M., Mitchell, T. C., Kappler, J. & Marrack, P. RANTES production by memory phenotype T cells is controlled by a posttranscriptional, TCR-dependent process. Immunity 17, 605–615 (2002).

    CAS  PubMed  Google Scholar 

  37. Shan, L. et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36, 491–501 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Helleberg, M. et al. Course and clinical significance of CD8+ T-cell counts in a large cohort of HIV-infected individuals. J. Infect. Dis. 211, 1726–1734 (2014).

    PubMed  Google Scholar 

  39. Zhang, J.-Y. et al. PD-1 up-regulation is correlated with HIV-specific memory CD8+ T-cell exhaustion in typical progressors but not in long-term nonprogressors. Blood 109, 4671–4678 (2007).

    CAS  PubMed  Google Scholar 

  40. Chun, T.-W. et al. Suppression of HIV replication in the resting CD4+ T cell reservoir by autologous CD8+ T cells: implications for the development of therapeutic strategies. Proc. Natl Acad. Sci. USA 98, 253–258 (2001).

    CAS  PubMed  Google Scholar 

  41. McBrien, J. B., Kumar, N. A. & Silvestri, G. Mechanisms of CD8+ T cell‐mediated suppression of HIV/SIV replication. Eur. J. Immunol. 48, 898–914 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Freel, S. A. et al. Initial HIV-1 antigen-specific CD8+ T cells in acute HIV-1 infection inhibit transmitted/founder virus replication. J. Virol. 86, 6835–6846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Martinet, V. et al. Type I interferons regulate eomesodermin expression and the development of unconventional memory CD8+ T cells. Nat. Commun. 6, 7089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Renkema, K. R. et al. IL-4 sensitivity shapes the peripheral CD8+ T cell pool and response to infection. J. Exp. Med. 213, 1319–1329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cardozo, E. F., Apetrei, C., Pandrea, I. & Ribeiro, R. M. The dynamics of simian immunodeficiency virus after depletion of CD8+ cells. Immunological Rev. 285, 26–37 (2018).

    CAS  Google Scholar 

  46. Jameson, S. C., Lee, Y. J. & Hogquist, K. A. in Advances in immunology Vol. 126, 173–213 (Elsevier, 2015).

  47. Arosa, F. A. On the origin and function of human NK-like Cd8+ T cells: charting new territories. Front. Immunol. 8, 1588 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Prajapati, K., Perez, C., Rojas, L. B. P., Burke, B. & Guevara-Patino, J. A. Functions of NKG2D in CD8(+) T cells: an opportunity for immunotherapy. Cell. Mol. Immunol. 15, 470–479 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Balin, S. J. et al. Human antimicrobial cytotoxic T lymphocytes, defined by NK receptors and antimicrobial proteins, kill intracellular bacteria. Sci. Immunol. 3, eaat7668 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397 (1998).

    CAS  PubMed  Google Scholar 

  51. Boelen, L. et al. Inhibitory killer cell immunoglobulin-like receptors strengthen CD8+ T cell–mediated control of HIV-1, HCV, and HTLV-1. Sci. Immunol. 3, eaao2892 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Ramsuran, V. et al. Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells. Science 359, 86–90 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bashirova, A. A., Thomas, R. & Carrington, M. HLA/KIR restraint of HIV: surviving the fittest. Annu. Rev. Immunol. 29, 295–317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Study, T. I. H. C. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330, 1551 (2010).

    Google Scholar 

  55. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B* 35-Cw* 04 disadvantage. Science 283, 1748–1752 (1999).

    CAS  PubMed  Google Scholar 

  56. Košmrlj, A. et al. Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature 465, 350 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Goulder, P. & Deeks, S. G. HIV control: Is getting there the same as staying there? PLoS Pathog. 14, e1007222 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Sneller, M. C. et al. A randomized controlled safety/efficacy trial of therapeutic vaccination in HIV-infected individuals who initiated antiretroviral therapy early in infection. Sci. Transl. Med. 9, eaan8848 (2017).

    PubMed  Google Scholar 

  59. Truckenbrod, E. N. & Jameson, S. C. The virtuous self‐tolerance of virtual memory T cells. EMBO J. 37, e99883 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Drobek, A. et al. Strong homeostatic TCR signals induce formation of self‐tolerant virtual memory CD8 T cells. EMBO J. 37, e98518 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Ho, Y.-C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wong, J. K. & Yukl, S. A. Tissue reservoirs of HIV. Curr. Opin. HIV AIDS 11, 362 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun, H., Sun, C., Xiao, W. & Sun, R. Tissue-resident lymphocytes: from adaptive to innate immunity. Cell. Mol. Immunol. 16, 205–215 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chunbao Zhou and Jinhong Yuan (The Fifth Medical Center of the PLA General Hospital) for their technical support with flow cytometry analysis. This study was supported by the Innovation Groups of the National Natural Science Foundation of China (grant no. 81721002), the National Science and Technology Major Project (grant no. 2018ZX10302104-002) and National Natural Science Foundation of China (grant nos. 81901617 and 81772185).

Author information

Authors and Affiliations

Authors

Contributions

F.W. and C.Z. conceived the study and wrote the paper with J.J. C.Z., J.J., and H.H. designed and performed most experiments and analyzed the data. The clinical samples and data were contributed by H.H., L.H., Z.X., and G.Y. M.Z., J.L., and W.H. performed flow cytometry on HIV samples. M.S., Y.J., X.F., and J.S. contributed to scientific planning. Intellectual input was provided by all authors.

Corresponding authors

Correspondence to Chao Zhang or Fu-Sheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, JH., Huang, HH., Zhou, MJ. et al. Virtual memory CD8+ T cells restrain the viral reservoir in HIV-1-infected patients with antiretroviral therapy through derepressing KIR-mediated inhibition. Cell Mol Immunol 17, 1257–1265 (2020). https://doi.org/10.1038/s41423-020-0408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0408-9

Keywords

This article is cited by

Search

Quick links