Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tumor-associated myeloid cells: diversity and therapeutic targeting

Abstract

Myeloid cells in tumor tissues constitute a dynamic immune population characterized by a non-uniform phenotype and diverse functional activities. Both tumor-associated macrophages (TAMs), which are more abundantly represented, and tumor-associated neutrophils (TANs) are known to sustain tumor cell growth and invasion, support neoangiogenesis and suppress anticancer adaptive immune responses. In recent decades, several therapeutic approaches have been implemented in preclinical cancer models to neutralize the tumor-promoting roles of both TAMs and TANs. Some of the most successful strategies have now reached the clinic and are being investigated in clinical trials. In this review, we provide an overview of the recent literature on the ever-growing complexity of the biology of TAMs and TANs and the development of the most promising approaches to target these populations therapeutically in cancer patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell. 27, 462–472 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    CAS  PubMed  Google Scholar 

  3. 3.

    Mantovani, A. et al. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Nakamura, K. & Smyth, M. J. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol. Immunol. 17, 1–12 (2020).

    CAS  PubMed  Google Scholar 

  7. 7.

    Geissmann, F. et al. Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 10, 453–460 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kiss, M. et al. Myeloid cell heterogeneity in cancer: not a single cell alike. Cell Immunol. 330, 188–201 (2018).

    CAS  PubMed  Google Scholar 

  9. 9.

    Locati, M. & Curtale, G. Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. 15, 123–147 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 16, 183–194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    CAS  PubMed  Google Scholar 

  12. 12.

    Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    CAS  PubMed  Google Scholar 

  13. 13.

    Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Bain, C. C. et al. Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nat. Commun. 7, ncomms11852 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Loyher, P. L. et al. Macrophages of distinct origins contribute to tumor development in the lung. J. Exp. Med. 215, 2536–2553 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Laviron, M. & Boissonnas, A. Ontogeny of tumor-associated macrophages. Front Immunol. 10, 1799 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Franklin, R. A. et al. The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Müller, A. et al. Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int. J. Cancer 137, 278–288 (2015).

    PubMed  Google Scholar 

  20. 20.

    Hambardzumyan, D., Gutmann, D. H. & Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Etzerodt, A. et al. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J. Exp. Med. 217, e20191869 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mantovani, A. et al. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev. 21, 27–39 (2010).

    CAS  PubMed  Google Scholar 

  23. 23.

    Mazzoni, M. et al. Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. J. Exp. Clin. Cancer Res. 38, 208 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Porta, C. et al. Tumor-derived prostaglandin E2 promotes p50 NF-κB-dependent differentiation of monocytic MDSCs. Cancer Res. 80, 2874–2888 (2020).

    CAS  PubMed  Google Scholar 

  25. 25.

    Marigo, I. et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32, 790–802 (2010).

    CAS  PubMed  Google Scholar 

  26. 26.

    Strauss, L. et al. RORC1 regulates tumor-promoting “emergency” granulo-monocytopoiesis. Cancer Cell. 28, 253–269 (2015).

    CAS  PubMed  Google Scholar 

  27. 27.

    Mantovani, A. et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    CAS  PubMed  Google Scholar 

  28. 28.

    Allavena, P. et al. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol. Rev. 222, 155–161 (2008).

    CAS  PubMed  Google Scholar 

  29. 29.

    Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Mattiola, I. et al. The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat. Immunol. 20, 1012–1022 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Blando, J. et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc. Natl Acad. Sci. USA 116, 1692–1697 (2019).

    CAS  PubMed  Google Scholar 

  33. 33.

    Kato, S. et al. Expression of TIM3/VISTA checkpoints and the CD68 macrophage-associated marker correlates with anti-PD1/PDL1 resistance: implications of immunogram heterogeneity. Oncoimmunology 9, 1708065 (2020).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Walker, F. et al. IL6/sIL6R complex contributes to emergency granulopoietic responses in G-CSF- and GM-CSF-deficient mice. Blood 111, 3978–3985 (2008).

    CAS  PubMed  Google Scholar 

  35. 35.

    Borregaard, N. Neutrophils, from marrow to microbes. Immunity 33, 657–670 (2010).

    CAS  PubMed  Google Scholar 

  36. 36.

    Lawrence, S. M., Corriden, R. & Nizet, V. The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis. Microbiol. Mol. Biol/ Rev. 82, e00057–17 (2018).

    CAS  Google Scholar 

  37. 37.

    Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Shaul, M. E. & Fridlender, Z. G. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 16, 601–620 (2019).

    PubMed  Google Scholar 

  40. 40.

    Mollica Poeta, V. et al. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol. 10, 379 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Raccosta, L. et al. The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J. Exp. Med. 210, 1711–1728 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Reis, E. S. et al. Complement in cancer: untangling an intricate relationship. Nat. Rev. Immunol. 18, 5–18 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Roumenina, L. T. et al. Context-dependent roles of complement in cancer. Nat. Rev. Cancer 19, 698–715 (2019).

    CAS  PubMed  Google Scholar 

  44. 44.

    Carnevale, S. et al. The complexity of neutrophils in health and disease: focus on cancer. Semin Immunol. 48, 101409 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Zhou, G. et al. CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer. Carcinogenesis 39, 272–282 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e8 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Condamine T., et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 1 (2016).

  48. 48.

    Zhu, Y. P. et al. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 24, 2329–2341.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Cheng, Y. et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 9, 422 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    CAS  Google Scholar 

  53. 53.

    Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660 (2020).

    CAS  PubMed  Google Scholar 

  55. 55.

    Friebel, E. et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181, 1626–1642 (2020).

    CAS  PubMed  Google Scholar 

  56. 56.

    Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749.e18 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Donadon, M. et al. Macrophage morphology correlates with single-cell diversity and prognosis in colorectal liver metastasis. J. Exp. Med. 217, e20191847 (2020).

    CAS  PubMed  Google Scholar 

  61. 61.

    Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    CAS  PubMed  Google Scholar 

  62. 62.

    Hanna, R. N. et al. Patrolling monocytes control tumor metastasis to the lung. Science 350, 985–990 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Molgora, M. et al. The Yin–Yang of the interaction between myelomonocytic cells and NK cells. Scand. J. Immunol. 88, e12705 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Helm, O. et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int. J. Cancer 135, 843–861 (2014).

    CAS  PubMed  Google Scholar 

  65. 65.

    Canli, Ö. et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell. 32, 869–883.e5 (2017).

    CAS  PubMed  Google Scholar 

  66. 66.

    Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).

    CAS  PubMed  Google Scholar 

  67. 67.

    Guo, X. et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev. 31, 247–259 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Jinushi, M. et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc. Natl Acad. Sci. USA. 108, 12425–12430 (2011).

    CAS  PubMed  Google Scholar 

  69. 69.

    Lu, H. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16, 1105–1117 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Pastò, A., Consonni, F. M. & Sica, A. Influence of innate immunity on cancer cell stemness. Int. J. Mol. Sci. 21, 3352 (2020).

    PubMed Central  Google Scholar 

  71. 71.

    Liguori, M. et al. The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol. Immunol. https://doi.org/10.1038/s41423-020-0501-0. (2020).

    Article  PubMed  Google Scholar 

  72. 72.

    Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    CAS  PubMed  Google Scholar 

  74. 74.

    Bosurgi, L. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356, 1072–1076 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Afik, R. et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J. Exp. Med. 213, 2315–2331 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Lewis, J. S. et al. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J. Pathol. 192, 150–158 (2000).

    CAS  PubMed  Google Scholar 

  77. 77.

    Leek, R. D. et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56, 4625–4629 (1996).

    CAS  PubMed  Google Scholar 

  78. 78.

    Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66, 11238–11246 (2006).

    CAS  PubMed  Google Scholar 

  79. 79.

    Priceman, S. J. et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115, 1461–1471 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Stockmann, C. et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456, 814–818 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    Google Scholar 

  82. 82.

    Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 19, 512–526 (2011).

    CAS  PubMed  Google Scholar 

  83. 83.

    Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eaak9670 (2017).

    PubMed  Google Scholar 

  84. 84.

    Pan, W. et al. The DNA methylcytosine dioxygenase tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression. Immunity 47, 284–297.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Medler, T. R. et al. Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy. Cancer Cell. 34, 561–578.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Bonavita, E. et al. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell 160, 700–714 (2015).

    CAS  PubMed  Google Scholar 

  87. 87.

    Rubino, M. et al. Epigenetic regulation of the extrinsic oncosuppressor PTX3 gene in inflammation and cancer. Oncoimmunology 6, e1333215 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Kryczek, I. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203, 871–881 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Wang, L. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208, 577–592 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Ruffell, B., Affara, N. I. & Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Mason, S. D. & Joyce, J. A. Proteolytic networks in cancer. Trends Cell Biol. 21, 228–237 (2011).

    CAS  PubMed  Google Scholar 

  92. 92.

    Shojaei, F. et al. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc. Natl Acad. Sci. USA 105, 2640–2645 (2008).

    CAS  PubMed  Google Scholar 

  93. 93.

    Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Chen, M. B. et al. Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc. Natl Acad. Sci. USA 115, 7022–7027 (2018).

    CAS  PubMed  Google Scholar 

  95. 95.

    Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    CAS  PubMed  Google Scholar 

  96. 96.

    Butin-Israeli, V. et al. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. J. Clin. Investig. 129, 712–726 (2019).

    PubMed  Google Scholar 

  97. 97.

    Eruslanov, E. B. et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J. Clin. Investig. 124, 5466–5480 (2014).

    PubMed  Google Scholar 

  98. 98.

    Singhal, S. et al. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell. 30, 120–135 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Ponzetta, A. et al. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell 178, 346–360.e24 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Mahiddine, K. et al. Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils. J. Clin. Invest. 130, 389–403 (2020).

    CAS  PubMed  Google Scholar 

  101. 101.

    De Palma, M. & Lewis, C. E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 23, 277–286 (2013).

    PubMed  Google Scholar 

  102. 102.

    Mantovani, A. & Allavena, P. The interaction of anticancer therapies with tumor-associated macrophages. J. Exp. Med. 212, 435–445 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Cortese, N. et al. Macrophages at the crossroads of anticancer strategies. Front Biosci. (Landmark Ed.). 24, 1271–1283 (2019).

    CAS  PubMed  Google Scholar 

  104. 104.

    Garg, A. D. et al. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 6, e1386829 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Ma, Y. et al. Autophagy and cellular immune responses. Immunity 39, 211–227 (2013).

    CAS  PubMed  Google Scholar 

  106. 106.

    Kroemer, G. et al. Immunogenic cell death in cancer therapy. Annu Rev. Immunol. 31, 51–72 (2013).

    CAS  PubMed  Google Scholar 

  107. 107.

    Galluzzi, L. et al. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 28, 690–714 (2015).

    CAS  PubMed  Google Scholar 

  108. 108.

    Galluzzi, L. et al. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    CAS  PubMed  Google Scholar 

  109. 109.

    Di Caro, G. et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut 65, 1710–1720 (2016).

    PubMed  Google Scholar 

  110. 110.

    Malesci, A. et al. Tumor-associated macrophages and response to 5-fluorouracil adjuvant therapy in stage III colorectal cancer. Oncoimmunology 6, e1342918 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Kodumudi, K. N. et al. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res. 16, 4583–4594 (2010).

    CAS  PubMed  Google Scholar 

  112. 112.

    Paulus, P. et al. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 66, 4349–4356 (2006).

    CAS  PubMed  Google Scholar 

  113. 113.

    Salvagno, C. et al. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat. Cell Biol. 21, 511–521 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Yin, Y. et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6. Clin. Cancer Res. 23, 7375–7387 (2017).

    CAS  PubMed  Google Scholar 

  115. 115.

    DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25, 2465–2479 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Karagiannis, G. S. et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci. Transl. Med. 9, eaan0026 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24, 589–602 (2013).

    CAS  PubMed  Google Scholar 

  120. 120.

    Jiang, W. et al. Immune priming of the tumor microenvironment by radiation. Trends Cancer 2, 638–645 (2016).

    PubMed  Google Scholar 

  121. 121.

    Kalbasi, A. et al. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin. Cancer Res. 23, 137–148 (2017).

    CAS  PubMed  Google Scholar 

  122. 122.

    Klopp, A. H. et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 67, 11687–11695 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73, 2782–2794 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Gül, N. & van Egmond, M. Antibody-dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Res. 75, 5008–5013 (2015).

    PubMed  Google Scholar 

  125. 125.

    DiLillo, D. J. & Ravetch, J. V. Fc-receptor interactions regulate both cytotoxic and immunomodulatory therapeutic antibody effector functions. Cancer Immunol. Res. 3, 704–713 (2015).

    CAS  PubMed  Google Scholar 

  126. 126.

    Clynes, R. A. et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 6, 443–446 (2000).

    CAS  PubMed  Google Scholar 

  127. 127.

    Wilson, N. S. et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell. 19, 101–113 (2011).

    CAS  PubMed  Google Scholar 

  128. 128.

    Uchida, J. et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med. 199, 1659–1669 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Minard-Colin, V. et al. Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage Fcgamma RI, Fcgamma RIII, and Fcgamma RIV. Blood 112, 1205–1213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Gennari, R. et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin. Cancer Res. 10, 5650–5655 (2004).

    CAS  PubMed  Google Scholar 

  131. 131.

    Barok, M. et al. Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol. Cancer Ther. 6, 2065–2072 (2007).

    CAS  PubMed  Google Scholar 

  132. 132.

    Musolino, A. et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol. 26, 1789–1796 (2008).

    CAS  PubMed  Google Scholar 

  133. 133.

    Overdijk, M. B. et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 7, 311–321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Weng, W. K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    CAS  PubMed  Google Scholar 

  135. 135.

    Bibeau, F. et al. Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol. 27, 1122–1129 (2009).

    CAS  PubMed  Google Scholar 

  136. 136.

    Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Chao, M. P., Weissman, I. L. & Majeti, R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24, 225–232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    McCracken, M. N., Cha, A. C. & Weissman, I. L. Molecular pathways: activating T cells after cancer cell phagocytosis from blockade of CD47 “Don’t Eat Me” signals. Clin. Cancer Res. 21, 3597–3601 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).

    CAS  PubMed  Google Scholar 

  140. 140.

    Gholamin, S. et al. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 9, eaaf2968 (2017).

    PubMed  Google Scholar 

  141. 141.

    Bulliard, Y. et al. Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Kuang, D. M. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327–1337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Bloch, O. et al. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin. Cancer Res. 19, 3165–3175 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Cottrell, T. R. et al. Pathologic features of response to neoadjuvant anti-pd-1 in resected non-small cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC). Ann. Oncol. 29, 1853–1860 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Fridlender, Z. G. et al. CCL2 blockade augments cancer immunotherapy. Cancer Res. 70, 109–118 (2010).

    CAS  PubMed  Google Scholar 

  147. 147.

    Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Peranzoni, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc. Natl Acad. Sci. USA 115, E4041–E4050 (2018).

    CAS  PubMed  Google Scholar 

  149. 149.

    Neubert, N. J. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci. Transl. Med. 10, eaan3311 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    CAS  PubMed  Google Scholar 

  151. 151.

    Alizadeh, D. et al. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res. 74, 104–118 (2014).

    CAS  PubMed  Google Scholar 

  152. 152.

    Bruchard, M. et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19, 57–64 (2013).

    CAS  PubMed  Google Scholar 

  153. 153.

    Galdiero, M. R. et al. Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. Int. J. Cancer 139, 446–456 (2016).

    CAS  PubMed  Google Scholar 

  154. 154.

    Governa, V. et al. The interplay between neutrophils and CD8. Clin. Cancer Res. 23, 3847–3858 (2017).

    CAS  PubMed  Google Scholar 

  155. 155.

    Posabella, A. et al. High density of CD66b in primary high-grade ovarian cancer independently predicts response to chemotherapy. J. Cancer Res. Clin. Oncol. 146, 127–136 (2020).

    CAS  PubMed  Google Scholar 

  156. 156.

    Schernberg, A. et al. Neutrophils, a candidate biomarker and target for radiation therapy. Acta Oncol. 56, 1522–1530 (2017).

    CAS  PubMed  Google Scholar 

  157. 157.

    Takeshima, T. et al. Key role for neutrophils in radiation-induced antitumor immune responses: potentiation with G-CSF. Proc. Natl Acad. Sci. USA 113, 11300–11305 (2016).

    CAS  PubMed  Google Scholar 

  158. 158.

    Argyle, D. & Kitamura, T. Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors. Front Immunol. 9, 2629 (2018).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Brana, I. et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol. 10, 111–123 (2015).

    PubMed  Google Scholar 

  160. 160.

    Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 25, 846–859 (2014).

    CAS  PubMed  Google Scholar 

  163. 163.

    Peyraud, F., Cousin, S. & Italiano, A. CSF-1R inhibitor development: current clinical status. Curr. Oncol. Rep. 19, 70 (2017).

    PubMed  Google Scholar 

  164. 164.

    Beltraminelli, T., De & Palma, M. Biology and therapeutic targeting of tumour-associated macrophages. J. Pathol. 250, 573–592 (2020).

    PubMed  Google Scholar 

  165. 165.

    Monk, B. J. et al. Trabectedin as a chemotherapy option for patients with BRCA deficiency. Cancer Treat. Rev. 50, 175–182 (2016).

    CAS  PubMed  Google Scholar 

  166. 166.

    Germano, G. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 23, 249–262 (2013).

    CAS  PubMed  Google Scholar 

  167. 167.

    Borgoni, S. et al. Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype. Oncoimmunology 7, e1393596 (2018).

    PubMed  Google Scholar 

  168. 168.

    Banerjee, P. et al. Trabectedin reveals a strategy of immunomodulation in chronic lymphocytic leukemia. Cancer Immunol. Res. 7, 2036–2051 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Jones, J. D. et al. Trabectedin reduces skeletal prostate cancer tumor size in association with effects on M2 macrophages and efferocytosis. Neoplasia 21, 172–184 (2019).

    CAS  PubMed  Google Scholar 

  170. 170.

    Carminati, L. et al. Antimetastatic and antiangiogenic activity of trabectedin in cutaneous melanoma. Carcinogenesis 40, 303–312 (2019).

    CAS  PubMed  Google Scholar 

  171. 171.

    Gordon, S. & Plüddemann, A. The mononuclear phagocytic system. Generation of diversity. Front Immunol. 10, 1893 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Etzerodt, A. et al. Specific targeting of CD163 mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression. J. Exp. Med. 216, 2394–2411 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Balkwill, F. R. & Mantovani, A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 22, 33–40 (2012).

    CAS  PubMed  Google Scholar 

  174. 174.

    Vonderheide, R. H. CD40 agonist antibodies in cancer immunotherapy. Annu Rev. Med. 71, 47–58 (2020).

    CAS  PubMed  Google Scholar 

  175. 175.

    Advani, R. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018).

    CAS  PubMed  Google Scholar 

  176. 176.

    Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    CAS  PubMed  Google Scholar 

  177. 177.

    Jaynes, J. M. et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci. Transl. Med. 12, eaax6337 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Georgoudaki, A. M. et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 15, 2000–2011 (2016).

    CAS  PubMed  Google Scholar 

  179. 179.

    Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    CAS  PubMed  Google Scholar 

  180. 180.

    Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    CAS  PubMed  Google Scholar 

  181. 181.

    Pettenati, C. & Ingersoll, M. A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 15, 615–625 (2018).

    CAS  PubMed  Google Scholar 

  182. 182.

    Ji, N. et al. Percutaneous BCG enhances innate effector antitumor cytotoxicity during treatment of bladder cancer: a translational clinical trial. Oncoimmunology 8, 1614857 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. 183.

    Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    CAS  PubMed  Google Scholar 

  184. 184.

    Smith, M. et al. Trial watch: toll-like receptor agonists in cancer immunotherapy. Oncoimmunology 7, e1526250 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Huang, L., Xu, H. & Peng, G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol. Immunol. 15, 428–437 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Chow, L. Q. M. et al. Phase Ib trial of the toll-like receptor 8 agonist, Motolimod (VTX-2337), combined with cetuximab in patients with recurrent or metastatic SCCHN. Clin. Cancer Res. 23, 2442–2450 (2017).

    CAS  PubMed  Google Scholar 

  187. 187.

    Kell, S. A. et al. Preclinical development of the TLR9 agonist DV281 as an inhaled aerosolized immunotherapeutic for lung cancer: Pharmacological profile in mice, non-human primates, and human primary cells. Int. Immunopharmacol. 66, 296–308 (2019).

    CAS  PubMed  Google Scholar 

  188. 188.

    Ribas, A. et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov. 8, 1250–1257 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Frank, M. J. et al. In situ vaccination with a TLR9 agonist and local low-dose radiation induces systemic responses in untreated indolent lymphoma. Cancer Discov. 8, 1258–1269 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Kaneda, M. M. et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Gunderson, A. J. et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 6, 270–285 (2016).

    CAS  PubMed  Google Scholar 

  192. 192.

    De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 539, 443–447 (2016).

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Lopez-Yrigoyen, M., Cassetta, L. & Pollard, J. W. Macrophage targeting in cancer. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14377. (2020).

    Article  PubMed  Google Scholar 

  194. 194.

    Guerriero, J. L. et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543, 428–432 (2017).

    CAS  PubMed  Google Scholar 

  195. 195.

    Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 579, 284–290 (2020).

    CAS  PubMed  Google Scholar 

  196. 196.

    Geeraerts, X. et al. Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front Immunol. 8, 289 (2017).

    PubMed  PubMed Central  Google Scholar 

  197. 197.

    Oh, M. H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Investig. 130, 3865–3884 (2020).

    CAS  PubMed  Google Scholar 

  198. 198.

    Altman, B. J., Stine, Z. E. & Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Menga, A. et al. Glufosinate constrains synchronous and metachronous metastasis by promoting anti-tumor macrophages. EMBO Mol. Med. 12, e11210 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201.

    Chen, P. et al. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc. Natl Acad. Sci. USA 114, 580–585 (2017).

    CAS  PubMed  Google Scholar 

  202. 202.

    Mu, X. et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle. 17, 428–438 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Ernens, I. et al. Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochem. Biophys. Res. Commun. 392, 351–356 (2010).

    CAS  PubMed  Google Scholar 

  204. 204.

    Cekic, C. et al. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 74, 7250–7259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205.

    Grohmann, U. & Bronte, V. Control of immune response by amino acid metabolism. Immunol. Rev. 236, 243–264 (2010).

    CAS  PubMed  Google Scholar 

  206. 206.

    Mehla, K. & Singh, P. K. Metabolic regulation of macrophage polarization in cancer. Cancer Trends Cancer 5, 822–834 (2019).

    CAS  PubMed  Google Scholar 

  207. 207.

    Frigault, M. J. & Maus, M. V. State of the art in CAR T cell therapy for CD19+ B cell malignancies. J. Clin. Investig. 130, 1586–1594 (2020).

    CAS  PubMed  Google Scholar 

  208. 208.

    Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    CAS  PubMed  Google Scholar 

  209. 209.

    Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210.

    Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 29, 832–845 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. 211.

    Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212.

    Yang, J. et al. Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and FASL mechanisms. Cancer Immunol. Res. 6, 1186–1198 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213.

    Shrestha, S. et al. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype. Oncoimmunology 5, e1067744 (2016).

    PubMed  Google Scholar 

  214. 214.

    Pylaeva, E. et al. NAMPT signaling is critical for the proangiogenic activity of tumor-associated neutrophils. Int. J. Cancer 144, 136–149 (2019).

    CAS  PubMed  Google Scholar 

  215. 215.

    van Egmond, M. & Bakema, J. E. Neutrophils as effector cells for antibody-based immunotherapy of cancer. Semin Cancer Biol. 23, 190–199 (2013).

    PubMed  Google Scholar 

  216. 216.

    Brandsma, A. M. et al. Potent Fc receptor signaling by IgA leads to superior killing of cancer cells by neutrophils compared to IgG. Front. Immunol. 10, 704 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Pascal, V. et al. Anti-CD20 IgA can protect mice against lymphoma development: evaluation of the direct impact of IgA and cytotoxic effector recruitment on CD20 target cells. Haematologica 97, 1686–1694 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218.

    Treffers, L. W. et al. IgA-mediated killing of tumor cells by neutrophils is enhanced by CD47-SIRPα checkpoint inhibition. Cancer Immunol. Res. 8, 120–130 (2020).

    CAS  PubMed  Google Scholar 

  219. 219.

    Matlung, H. L. et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 23, 3946–3959.e6 (2018).

    CAS  PubMed  Google Scholar 

  220. 220.

    Ring, N. G. et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc. Natl Acad. Sci. USA 114, E10578–E10585 (2017).

    CAS  PubMed  Google Scholar 

  221. 221.

    Xu, W. et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol. Res. 7, 1497–1510 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. 222.

    He, G. et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 34, 141 (2015).

    PubMed  PubMed Central  Google Scholar 

  223. 223.

    Wang, T. T. et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut 66, 1900–1911 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224.

    Gershkovitz, M. Y. O., Fainsod-Levi, T. & Granot, Z. The pd-l1/pd-1 axis blocks neutrophil cytotoxicity in cancer. BioRxiv https://doi.org/10.1101/2020.02.28.969410 (2020).

    Article  Google Scholar 

  225. 225.

    Jenmalm, M. C. et al. Regulation of myeloid cell function through the CD200 receptor. J. Immunol. 176, 191–199 (2006).

    CAS  PubMed  Google Scholar 

  226. 226.

    Wang, J. et al. Neutrophil infiltration during inflammation is regulated by PILRα via modulation of integrin activation. Nat. Immunol. 14, 34–40 (2013).

    CAS  PubMed  Google Scholar 

  227. 227.

    Baudhuin, J. et al. Exocytosis acts as a modulator of the ILT4-mediated inhibition of neutrophil functions. Proc. Natl Acad. Sci. USA 110, 17957–17962 (2013).

    CAS  PubMed  Google Scholar 

  228. 228.

    Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. 229.

    Strauss, L. et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci. Immunol. 5, eaay1863 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. 230.

    Massara, M. et al. ACKR2 in hematopoietic precursors as a checkpoint of neutrophil release and anti-metastatic activity. Nat. Commun. 9, 676 (2018).

    PubMed  PubMed Central  Google Scholar 

  231. 231.

    Colonna, M. et al. Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J. Immunol. 160, 3096–3100 (1998).

    CAS  PubMed  Google Scholar 

  232. 232.

    Kim, I. S. et al. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol. 21, 1113–1126 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. 233.

    Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).

    CAS  PubMed  Google Scholar 

  234. 234.

    Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

    CAS  PubMed  Google Scholar 

  235. 235.

    Pagès, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to the results reviewed here has received funding from Associazione Italiana Ricerca Cancro (AIRC): AIRC 5X1000 IG-21147 to A.M.; the funding agency had no role in the preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alberto Mantovani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mantovani, A., Marchesi, F., Jaillon, S. et al. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol Immunol 18, 566–578 (2021). https://doi.org/10.1038/s41423-020-00613-4

Download citation

Keywords

  • tumor-associated macrophages
  • tumor microenvironment
  • macrophage targeting

Search

Quick links