Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRAF2 regulates T cell immunity by maintaining a Tpl2-ERK survival signaling axis in effector and memory CD8 T cells

Abstract

Generation and maintenance of antigen-specific effector and memory T cells are central events in immune responses against infections. We show that TNF receptor-associated factor 2 (TRAF2) maintains a survival signaling axis in effector and memory CD8 T cells required for immune responses against infections. This signaling axis involves activation of Tpl2 and its downstream kinase ERK by NF-κB-inducing kinase (NIK) and degradation of the proapoptotic factor Bim. NIK mediates Tpl2 activation by stimulating the phosphorylation and degradation of the Tpl2 inhibitor p105. Interestingly, while NIK is required for Tpl2-ERK signaling under normal conditions, uncontrolled NIK activation due to loss of its negative regulator, TRAF2, causes constitutive degradation of p105 and Tpl2, leading to severe defects in ERK activation and effector/memory CD8 T cell survival. Thus, TRAF2 controls a previously unappreciated signaling axis mediating effector/memory CD8 T cell survival and protective immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Durgeau, A., Virk, Y., Corgnac, S. & Mami-Chouaib, F. Recent advances in targeting CD8 T-Cell immunity for more effective cancer immunotherapy. Front. Immunol. 9, 14 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Glimcher, L. H., Townsend, M. J., Sullivan, B. M. & Lord, G. M. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol. 4, 900–911 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Cui, W. & Kaech, S. M. Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol. Rev. 236, 151–166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marsden, V. S. & Strasser, A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu. Rev. Immunol. 21, 71–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Wojciechowski, S. et al. Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis. J. Exp. Med. 204, 1665–1675 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hildeman, D. A. et al. Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16, 759–767 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Wojciechowski, S. et al. Bim mediates apoptosis of CD127(lo) effector T cells and limits T cell memory. Eur. J. Immunol. 36, 1694–1706 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weant, A. E. et al. Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity 28, 218–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Ley, R., Balmanno, K., Hadfield, K., Weston, C. & Cook, S. J. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J. Biol. Chem. 278, 18811–18816 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Hubner, A., Barrett, T., Flavell, R. A. & Davis, R. J. Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol. Cell 30, 415–425 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Reilly, L. A. et al. MEK/ERK-mediated phosphorylation of Bim is required to ensure survival of T and B lymphocytes during mitogenic stimulation. J. Immunol. 183, 261–269 (2009).

    Article  PubMed  Google Scholar 

  12. Ha, H., Han, D. & Choi, Y. TRAF-mediated TNFR-family signaling. Curr. Protoc. Immunol. 87, 11.9D.1–11.9D.19 (2009).

  13. Xie, P. TRAF molecules in cell signaling and in human diseases. J. Mol. Signal. 8, 7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi, J. H. & Sun, S. C. Tumor necrosis factor receptor-associated factor regulation of nuclear factor kappaB and mitogen-activated protein kinase pathways. Front. Immunol. 9, 1849 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Villanueva, J. E. et al. TRAF2 regulates peripheral CD8(+) T-cell and NKT-cell homeostasis by modulating sensitivity to IL-15. Eur. J. Immunol. 45, 1820–1831 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, X. D. & Sun, S. C. Targeting signaling factors for degradation, an emerging mechanism for TRAF functions. Immunol. Rev. 266, 56–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun, S. C. The noncanonical NF-kappaB pathway. Immunol. Rev. 246, 125–140 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Li, Y. et al. Cell intrinsic role of NF-kappaB-inducing kinase in regulating T cell-mediated immune and autoimmune responses. Sci. Rep. 6, 22115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beinke, S. et al. NF-kappaB1 p105 negatively regulates TPL-2 MEK kinase activity. Mol. Cell Biol. 23, 4739–4752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waterfield, M. R., Zhang, M., Norman, L. P. & Sun, S. C. NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol. Cell 11, 685–694 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Gantke, T., Sriskantharajah, S. & Ley, S. C. Regulation and function of TPL-2, an IkappaB kinase-regulated MAP kinase kinase kinase. Cell Res. 21, 131–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Beinke, S., Robinson, M. J., Hugunin, M. & Ley, S. C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol. Cell Biol. 24, 9658–9667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waterfield, M., Jin, W., Reiley, W., Zhang, M. & Sun, S. C. IkappaB kinase is an essential component of the Tpl2 signaling pathway. Mol. Cell Biol. 24, 6040–6048 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haluszczak, C. et al. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206, 435–448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Foulds, K. E. et al. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol. 168, 1528–1532 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Khan, S. H. & Badovinac, V. P. Listeria monocytogenes: a model pathogen to study antigen-specific memory CD8 T cell responses. Semin. Immunopathol. 37, 301–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiu, Z., Khairallah, C. & Sheridan, B. S. Listeria Monocytogenes: a model pathogen continues to refine our knowledge of the CD8 T cell response. Pathogens 7, 55 (2018).

  29. Masopust, D., Kaech, S. M., Wherry, E. J. & Ahmed, R. The role of programming in memory T-cell development. Curr. Opin. Immunol. 16, 217–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Porter, B. B. & Harty, J. T. The onset of CD8+-T-cell contraction is influenced by the peak of Listeria monocytogenes infection and antigen display. Infect. Immun. 74, 1528–1536 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan, Y. et al. Systemic C3 modulates CD8+ T cell contraction after Listeria monocytogenes infection. J. Immunol. 193, 3426–3435 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, K., Neale, G., Green, D. R., He, W. & Chi, H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat. Immunol. 12, 888–897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D’Souza, W. N., Chang, C. F., Fischer, A. M., Li, M. & Hedrick, S. M. The Erk2 MAPK regulates CD8 T cell proliferation and survival. J. Immunol. 181, 7617–7629 (2008).

    Article  PubMed  Google Scholar 

  36. Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kortum, R. L., Rouquette-Jazdanian, A. K. & Samelson, L. E. Ras and extracellular signal-regulated kinase signaling in thymocytes and T cells. Trends Immunol. 34, 259–268 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Tsukamoto, H., Irie, A. & Nishimura, Y. B-Raf contributes to sustained extracellular signal-regulated kinase activation associated with Interleukin-2 production stimulated through the T cell receptor. J. Biol. Chem. 279, 48457–48465 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Watford, W. T. et al. Tpl2 kinase regulates T cell interferon-gamma production and host resistance to Toxoplasma gondii. J. Exp. Med. 205, 2803–2812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, S. C. Non-canonical NF-kappaB signaling pathway. Cell Res. 21, 71–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Sabbagh, L., Pulle, G., Liu, Y., Tsitsikov, E. N. & Watts, T. H. ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J. Immunol. 180, 8093–8101 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Wortzman, M. E., Clouthier, D. L., McPherson, A. J., Lin, G. H. & Watts, T. H. The contextual role of TNFR family members in CD8(+) T-cell control of viral infections. Immunol. Rev. 255, 125–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Sun, S. C. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545–558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tucker, E. et al. A novel mutation in the Nfkb2 gene generates an NF-kappa B2 “super repressor”. J. Immunol. 179, 7514–7522 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 9, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gardam, S., Sierro, F., Basten, A., Mackay, F. & Brink, R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 28, 391–401 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Brightbill, H. D. et al. Conditional deletion of NF-kappaB-Inducing Kinase (NIK) in adult mice disrupts mature B cell survival and activation. J. Immunol. 195, 953–964 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Pearce, E. L. & Shen, H. Generation of CD8 T cell memory is regulated by IL-12. J. Immunol. 179, 2074–2081 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Zou, Q. et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J. Exp. Med 212, 1323–1336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiao, G., Harhaj, E. W. & Sun, S. C. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol. Cell. 7, 401–409 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R Brink for the Traf2-flox mice, Genentech Inc. for the Map3k14 flox mice and R Starr for the Nfkb2lym1 mice. We also thank the personnel from the flow cytometry, DNA analysis, and animal facilities at The MD Anderson Cancer Center for technical assistance. This study was supported by grants from the National Institutes of Health (AI64639 and GM84459), and the core facilities of MD Anderson Cancer Center are supported by the NIH/NCI Cancer Center Support Grant (CCSG) P30CA016672.

Author information

Authors and Affiliations

Authors

Contributions

X.X. designed and performed the research, prepared the figures, and wrote part of the manuscript; L.Z., Z.J., Y.L., M.G., X.Z., H.W., J.H.C., C.J.K., and X.C. contributed to performing the experiments; and S-C.S. supervised the work and wrote the manuscript.

Corresponding author

Correspondence to Shao-Cong Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Zhu, L., Jie, Z. et al. TRAF2 regulates T cell immunity by maintaining a Tpl2-ERK survival signaling axis in effector and memory CD8 T cells. Cell Mol Immunol 18, 2262–2274 (2021). https://doi.org/10.1038/s41423-020-00583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-00583-7

Keywords

This article is cited by

Search

Quick links