Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy

Abstract

Macrophage polarization to proinflammatory M1-like or anti-inflammatory M2-like cells is critical to mount a host defense or repair tissue. The exact molecular mechanisms controlling this process are still elusive. Here, we report that ubiquitin-specific protease 19 (USP19) acts as an anti-inflammatory switch that inhibits inflammatory responses and promotes M2-like macrophage polarization. USP19 inhibited NLRP3 inflammasome activation by increasing autophagy flux and decreasing the generation of mitochondrial reactive oxygen species. In addition, USP19 inhibited the proteasomal degradation of inflammasome-independent NLRP3 by cleaving its polyubiquitin chains. USP19-stabilized NLRP3 promoted M2-like macrophage polarization by direct association with interferon regulatory factor 4, thereby preventing its p62-mediated selective autophagic degradation. Consistent with these observations, compared to wild-type mice, Usp19−/− mice had decreased M2-like macrophage polarization and increased interleukin-1β secretion, in response to alum and chitin injections. Thus, we have uncovered an unexpected mechanism by which USP19 switches the proinflammatory function of NLRP3 into an anti-inflammatory function, and suggest that USP19 is a potential therapeutic target for inflammatory interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saha, S., Shalova, I. N. & Biswas, S. K. Metabolic regulation of macrophage phenotype and function. Immunol. Rev. 280, 102–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Murray, P. J. Macrophage polarization. Annu. Rev. Physiol. 79, 541–566 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Kimura, T. et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat. Commun. 7, 13130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rathinam, V. A. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606–619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hwang, I. et al. Non-transcriptional regulation of NLRP3 inflammasome signaling by IL-4. Immunol. Cell Biol. 93, 591–599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Investig. 121, 2736–2749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Satoh, T. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11, 936–944 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Byles, V. et al. The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 4, 2834 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. Huang, S. C. et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817–830 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, J. G., Kim, W., Gygi, S. & Ye, Y. Characterization of the deubiquitinating activity of USP19 and its role in endoplasmic reticulum-associated degradation. J. Biol. Chem. 289, 3510–3517 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, M. et al. USP19 deubiquitinates HDAC1/2 to regulate DNA damage repair and control chromosomal stability. Oncotarget 8, 2197–2208 (2017).

    Article  PubMed  Google Scholar 

  12. Wu, X. et al. Regulation of TRIF-mediated innate immune response by K27-linked polyubiquitination and deubiquitination. Nat. Commun. 10, 4115 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lei, C. Q. et al. USP19 inhibits TNF-alpha- and IL-1beta-triggered NF-kappaB activation by deubiquitinating TAK1. J. Immunol. 203, 259–268 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Jin, S. et al. USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1. EMBO J. 35, 866–880 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, T. et al. TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep. 16, 1988–2002 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Ren, K. & Torres, R. Role of interleukin-1beta during pain and inflammation. Brain Res. Rev. 60, 57–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Guo, C. et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 Inflammasome. Immunity 45, 802–816 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Kuroda, E. et al. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity 34, 514–526 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Song, H. et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat. Commun. 7, 13727 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bal, S. M. et al. IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Snelgrove, R. J. & Lloyd, C. M. An NLRP3, IL-1beta, neutrophil axis in the respiratory tract leaves you breathless. Am. J. Respir. Crit. Care Med. 196, 253–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Audish, D. et al. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J. Biol. Chem. 284, 12762–12771 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kang, M. J., Jo, S. G., Kim, D. J. & Park, J. H. NLRP3 inflammasome mediates interleukin-1β production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice. Immunology 150, 495–505 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michaelis, K. A. et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 10, 4682 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dziarski, R. & Gupta, D. Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: a reevaluation. Infect. Immun. 73, 5212–5216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanneganti, T. D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Franklin, B. S., Latz, E. & Schmidt, F. I. The intra- and extracellular functions of ASC specks. Immunol. Rev. 281, 74–87 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gross, C. J. et al. K(+) efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45, 761–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Cui, J., Jin, S. & Wang, R. F. The BECN1-USP19 axis plays a role in the crosstalk between autophagy and antiviral immune responses. Autophagy 12, 1210–1211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Motran, C. C. et al. Helminth infections: recognition and modulation of the immune response by innate immune cells. Front. Immunol. 9, 664 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Reese, T. A. et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447, 92–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Y. et al. NLRP3 regulates macrophage M2 polarization through up-regulation of IL-4 in asthma. Biochem. J. 475, 1995–2008 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Dowds, T. A., Masumoto, J., Zhu, L., Inohara, N. & Nunez, G. Cryopyrin-induced interleukin 1beta secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J. Biol. Chem. 279, 21924–21928 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Y. et al. ANGPTL8 negatively regulates NF-kappaB activation by facilitating selective autophagic degradation of IKKgamma. Nat. Commun. 8, 2164 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Du, Y. et al. LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J. 37, 351–366 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Ding, N. et al. Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway. J. Cell. Physiol. 234, 8788–8796 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Koh, Y. C., Yang, G., Lai, C. S., Weerawatanakorn, M. & Pan, M. H. Chemopreventive effects of phytochemicals and medicines on M1/M2 polarized macrophage role in inflammation-related diseases. Int. J. Mol. Sci. 19, 2208 (2018).

  41. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Hubbard-Lucey, V. M. et al. Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells. Immunity 41, 579–591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, Y. T. et al. Select autophagy genes maintain quiescence of tissue-resident macrophages and increase susceptibility to Listeria monocytogenes. Nat. Microbiol. 5, 272–281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, W. et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat. Commun. 10, 1076 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pelegrin, P. & Surprenant, A. Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J. 28, 2114–2127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, W. et al. Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium. J. Immunol. 190, 1239–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Ting, J. P. & Harton, J. A. NLRP3 moonlights in TH2 polarization. Nat. Immunol. 16, 794–796 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Park, S. H., Ham, S., Lee, A., Moller, A. & Kim, T. S. NLRP3 negatively regulates Treg differentiation through Kpna2-mediated nuclear translocation. J. Biol. Chem. 294, 17951–17961 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, M. et al. TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Mol. Cell 64, 105–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Conti, L. & Gessani, S. GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology 213, 859–870 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Zheng, Y. et al. Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis. EMBO J. 37, e99347 (2018).

  52. Shi, H. et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17, 250–258 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project (2020YFA0908700) and the National Natural Science Foundation of China (31870862 and 31700760).

Author information

Authors and Affiliations

Authors

Contributions

T.L., L.W., and P.L. performed the experiments and analyzed the results. X.W., Y.L., J.C., Y.S., D.W., Z.W., Z.G., and X.X. provided technical help. J.C. and J.H. initiated and designed the project, and directed the research. T.L., S.B., and J.C. wrote the manuscript.

Corresponding authors

Correspondence to Junjiu Huang or Jun Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wang, L., Liang, P. et al. USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy. Cell Mol Immunol 18, 2431–2442 (2021). https://doi.org/10.1038/s41423-020-00567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-00567-7

Keywords

This article is cited by

Search

Quick links