Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phages and their potential to modulate the microbiome and immunity

Abstract

Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage–bacteria–host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reyes, A. et al. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat. Rev. Microbiol. 10, 607–617 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    CAS  PubMed  Google Scholar 

  3. Zablocki, O., Adriaenssens, E. M. & Cowan, D. Diversity and ecology of viruses in hyperarid desert soils. Appl. Environ. Microbiol. 82, 770–777 (2015).

    PubMed  Google Scholar 

  4. Howard-Varona, C. et al. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004).

    CAS  PubMed  Google Scholar 

  6. Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541, 488–493 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Davidson, A. R. Phages make a group decision. Nature 541, 466–467 (2017).

    CAS  PubMed  Google Scholar 

  8. Harms, A. & Diard, M. Crowd controlled-host quorum sensing drives phage decision. Cell Host Microbe 25, 179–181 (2019).

    CAS  PubMed  Google Scholar 

  9. Zeng, L. et al. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hynes, A. P. & Moineau, S. Phagebook: the social network. Mol. Cell 65, 963–964 (2017).

    CAS  PubMed  Google Scholar 

  11. Bellas, C., Anesio, A. & Barker, G. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions. Front. Microbiol. 6, 656 (2015).

  12. Silpe, J. E. & Bassler, B. L. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176, 268–280.e13 (2019).

    CAS  PubMed  Google Scholar 

  13. Galtier, M. et al. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ. Microbiol. 18, 2237–2245 (2016).

    CAS  PubMed  Google Scholar 

  14. Galtier, M. et al. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s Disease. J. Crohn’s Colitis 11, 840–847 (2017).

    Google Scholar 

  15. Maura, D. et al. Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob. Agents Chemother. 56, 6235–6242 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Oh, J. et al. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Oh, J. H. et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri. Cell Host Microbe 25, 273–284.e6 (2019).

    CAS  PubMed  Google Scholar 

  18. Hsu, B. B. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25, 803–814.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. d'Hérelle, F. Sur un microbe invisible antagoniste des bacilles dysentériques. C. R. Acad. Sci. 165, 373–375 (1917).

    Google Scholar 

  20. Sulakvelidze, A., Alavidze, Z. & Morris, J. G. Bacteriophage therapy. Antimicrobial Agents Chemother. 45, 649–659 (2001).

    CAS  Google Scholar 

  21. Krueger, A. P. & Scribner, E. J. Bacteriophage therapy. II. The bacteriophage: its nature and its therapeutic use. JAMA 19, 2160–2277 (1941).

    Google Scholar 

  22. Dixon, B. New dawn for phage therapy. Lancet Infect. Dis. 4, 186 (2004).

    PubMed  Google Scholar 

  23. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

    CAS  PubMed  Google Scholar 

  24. Hyman, P. & Abedon, S. T. Bacteriophage host range and bacterial resistance. Adv. Appl Microbiol 70, 217–248 (2010).

    CAS  PubMed  Google Scholar 

  25. Bertin, A., de Frutos, M. & Letellier, L. Bacteriophage-host interactions leading to genome internalization. Curr. Opin. Microbiol. 14, 492–496 (2011).

    CAS  PubMed  Google Scholar 

  26. Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Michel, A. et al. Bacteriophage PhiX174’s ecological niche and the flexibility of its Escherichia coli lipopolysaccharide receptor. Appl. Environ. Microbiol. 76, 7310–7313 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Latka, A. et al. Modeling the architecture of depolymerase-containing receptor binding proteins in Klebsiella phages. Front. Microbiol. 10, 2649 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Warren, R. A. Modified bases in bacteriophage DNAs. Annu. Rev. Microbiol. 34, 137–158 (1980).

    CAS  PubMed  Google Scholar 

  30. Hill, C., Miller, L. A. & Klaenhammer, T. R. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J. Bacteriol. 173, 4363 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894–899 (2009).

    CAS  PubMed  Google Scholar 

  32. Short, F. L. et al. The bacterial Type III toxin-antitoxin system, ToxIN, is a dynamic protein-RNA complex with stability-dependent antiviral abortive infection activity. Sci. Rep. 8, 1013 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Blower, T. R. et al. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLoS Genet. 8, e1003023 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Blower, T. R. et al. Viral molecular mimicry circumvents abortive infection and suppresses bacterial suicide to make hosts permissive for replication. Bacteriophage 2, 234–238 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Yanli Zheng, J. L. et al. Endogenous Type I CRISPR-Cas: from foreign DNA defense to prokaryotic engineering. Front. Bioeng. Biotechnol. 8, 62 (2020).

    PubMed  PubMed Central  Google Scholar 

  36. van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385–388 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Rollie, C. et al. Targeting of temperate phages drives loss of type I CRISPR–Cas systems. Nature 578, 149–153 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stern, A. et al. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res. 22, 1985–1994 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stanley, S. Y. & Maxwell, K. L. Phage-encoded anti-CRISPR defenses. Annu. Rev. Genet. 52, 445–464 (2018).

    CAS  PubMed  Google Scholar 

  40. Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925.e10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174, 908–916.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Alseth, E. O. et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574, 549–552 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    CAS  PubMed  Google Scholar 

  44. Ofir, G. et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3, 90–98 (2018).

    CAS  PubMed  Google Scholar 

  45. Koskella, B. et al. The costs of evolving resistance in heterogeneous parasite environments. Proc. Biol. Sci. 279, 1896–1903 (2012).

    PubMed  Google Scholar 

  46. Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol 7, 828–836 (2009).

    CAS  PubMed  Google Scholar 

  47. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoyles, L. et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res Microbiol 165, 803–812 (2014).

    CAS  PubMed  Google Scholar 

  49. Kim, M. S. et al. Diversity and abundance of single-stranded DNA viruses in human feces. Appl Environ. Microbiol 77, 8062–8070 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. d’Humières, C. et al. A simple, reproducible and cost-effective procedure to analyse gut phageome: from phage isolation to bioinformatic approach. Sci. Rep. 9, 11331 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Kang, H. S. et al. Prophage genomics reveals patterns in phage genome organization and replication. https://www.biorxiv.org/content/10.1101/114819v1 (2017).

  52. Kim, M. S. & Bae, J. W. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ. Microbiol. 18, 1498–1510 (2016).

    CAS  PubMed  Google Scholar 

  53. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Moreno-Gallego, J. L. et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe 25, 261–272.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450–12455 (2013).

    CAS  PubMed  Google Scholar 

  57. Kapusinszky, B., Minor, P. & Delwart, E. Nearly constant shedding of diverse enteric viruses by two healthy infants. J. Clin. Microbiol. 50, 3427–3434 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Witsø, E. et al. High prevalence of human enterovirus a infections in natural circulation of human enteroviruses. J. Clin. Microbiol 44, 4095–4100 (2006).

    PubMed  PubMed Central  Google Scholar 

  59. Manrique, P. et al. Healthy human gut phageome. Proc. Natl Acad. Sci. USA 113, 10400–10405 (2016).

    CAS  PubMed  Google Scholar 

  60. McCann, A. et al. Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ 6, e4694 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shkoporov, A. N. et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat. Commun. 9, 4781 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Kim, M. S. & Bae, J. W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 12, 1127–1141 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Reyes, A. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl Acad. Sci. USA 112, 11941–11946 (2015).

    CAS  PubMed  Google Scholar 

  65. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Duerkop, B. A. et al. Murine colitis reveals a disease-associated bacteriophage community. Nat. Microbiol. 3, 1023–1031 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 15892 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).

    CAS  PubMed  Google Scholar 

  70. Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).

    CAS  PubMed  Google Scholar 

  71. Jong, E. C., Ko, H. L. & Pulverer, G. Studies on bacteriophages of Propionibacterium acnes. Med Microbiol Immunol. 161, 263–271 (1975).

    CAS  PubMed  Google Scholar 

  72. Webster, G. F. & Cummins, C. S. Use of bacteriophage typing to distinguish Propionibacterium acne types I and II. J. Clin. Microbiol. 7, 84–90 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hannigan, G. D. et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 6, e01578–15 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, J. et al. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin. ISME J. 9, 2116 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Marples, R. R. The microflora of the face and acne lesions. J. Investig. Dermatol. 62, 326–331 (1974).

    CAS  PubMed  Google Scholar 

  76. Zierdt, C. H. Properties of Corynebacterium acnes bacteriophage and description of an interference phenomenon. J. Virol. 14, 1268–7 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lood, R. et al. Inducible Siphoviruses in superficial and deep tissue isolates of Propionibacterium acnes. BMC Microbiol 8, 139 (2008).

    PubMed  PubMed Central  Google Scholar 

  78. Marinelli, L. J. et al. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates. mBio 3, e00279–12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pulverer, G., Sorgo, W. & Ko, H. L. [Bacteriophages of Propionibacterium acnes (author’s transl)]. Zentralbl Bakteriol. Orig. A 225, 353–363 (1973).

    CAS  PubMed  Google Scholar 

  80. Allen, E. K. et al. Characterization of the nasopharyngeal microbiota in health and during rhinovirus challenge. Microbiome 2, 22 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. McCaskill, J. G. et al. Pulmonary immune responses to Propionibacterium acnes in C57BL/6 and BALB/c mice. Am. J. Respir. Cell Mol. Biol. 35, 347–356 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, Y. et al. Altered respiratory virome and serum cytokine profile associated with recurrent respiratory tract infections in children. Nat. Commun. 10, 2288 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Willner, D. et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE 4, e7370 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Gregory, A. C. et al. Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome. Respiratory Res. 19, 174 (2018).

    Google Scholar 

  85. Damelin, L. H. et al. Identification of predominant culturable vaginal Lactobacillus species and associated bacteriophages from women with and without vaginal discharge syndrome in South Africa. J. Med. Microbiol. 60, 180–183 (2011).

    PubMed  Google Scholar 

  86. Pavlova, S. I. et al. Phage infection in vaginal lactobacilli: an in vitro study. Infect. Dis. Obstet. Gynecol. 5, 36–44 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    CAS  Google Scholar 

  88. Fethers, K. A. et al. Sexual risk factors and bacterial vaginosis: a systematic review and meta-analysis. Clin. Infect. Dis. 47, 1426–1435 (2008).

    PubMed  Google Scholar 

  89. Pavlova, S. I. & Tao, L. Induction of vaginal Lactobacillus phages by the cigarette smoke chemical benzo[a]pyrene diol epoxide. Mutat. Res. 466, 57–62 (2000).

    CAS  PubMed  Google Scholar 

  90. Jakobsen, R. R. et al. Characterization of the vaginal DNA virome in health and dysbiosis: an opening study in patients with non-female factor infertility. https://www.biorxiv.org/content/10.1101/755710v1 (2019).

  91. Lev-Sagie, A. et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat. Med. 25, 1500–1504 (2019).

    CAS  PubMed  Google Scholar 

  92. Pride, D. T. et al. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 6, 915–926 (2012).

    CAS  PubMed  Google Scholar 

  93. Bachrach, G. et al. Bacteriophage isolation from human saliva. Lett. Appl. Microbiol. 36, 50–53 (2003).

    PubMed  Google Scholar 

  94. Hitch, G., Pratten, J. & Taylor, P. W. Isolation of bacteriophages from the oral cavity. Lett. Appl. Microbiol. 39, 215–219 (2004).

    CAS  PubMed  Google Scholar 

  95. Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives T(H)1 cell induction and inflammation. Science 358, 359–365 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Willner, D. et al. Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc. Natl Acad. Sci. USA 108, 4547–4553 (2011).

    CAS  PubMed  Google Scholar 

  97. Wang, J., Gao, Y. & Zhao, F. Phage-bacteria interaction network in human oral microbiome. Environ. Microbiol 18, 2143–2158 (2016).

    CAS  PubMed  Google Scholar 

  98. Carr, V. R. et al. The human oral phageome is highly diverse and rich in jumbo phages. https://www.biorxiv.org/content/10.1101/2020.07.06.186817v1 (2020).

  99. Hansen, M. F. et al. Big impact of the tiny: bacteriophage-bacteria interactions in biofilms. Trends Microbiol. 27, 739–752 (2019).

    CAS  PubMed  Google Scholar 

  100. Reyes, A. et al. Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut. Proc. Natl Acad. Sci. USA 110, 20236–20241 (2013).

    CAS  PubMed  Google Scholar 

  101. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS  PubMed  Google Scholar 

  103. Pannaraj, P. S. et al. Shared and distinct features of human milk and infant stool viromes. Front. Microbiol. 9, 1162 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. Garmaeva, S. et al. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol. 17, 84 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Howe, A. et al. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J. 10, 1217–1227 (2016).

    CAS  PubMed  Google Scholar 

  106. Duerkop, B. A. et al. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Natl Acad. Sci. USA 109, 17621–17626 (2012).

    CAS  PubMed  Google Scholar 

  107. Chatterjee, A. & Duerkop, B. A. Sugar and fatty acids Ack-celerate prophage induction. Cell Host Microbe 25, 175–176 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Deehan, E. C. & Walter, J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol. Metab. 27, 239–242 (2016).

    CAS  PubMed  Google Scholar 

  109. Van Belleghem, J. D. et al. Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System. Viruses 11, 10 (2018).

  110. Frobisher, M. & B., J. Transmissible toxicogenicity of Streptococci. Bull. Johns. Hopkins Hosp. 41, 167–173 (1927).

    Google Scholar 

  111. Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol 13, 641–650 (2015).

    CAS  PubMed  Google Scholar 

  112. Rabinovich, L. et al. Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell 150, 792–802 (2012).

    CAS  PubMed  Google Scholar 

  113. Pasechnek, A. et al. Active lysogeny in Listeria monocytogenes is a bacteria-phage adaptive response in the mammalian environment. Cell Rep. 32, 107956 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cenens, W. et al. Phage-host interactions during pseudolysogeny: lessons from the Pid/dgo interaction. Bacteriophage 3, e25029 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Latino, L. et al. Investigation of Pseudomonas aeruginosa strain PcyII-10 variants resisting infection by N4-like phage Ab09 in search for genes involved in phage adsorption. PLoS ONE 14, e0215456 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nguyen, S. et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio 8, e01874-17 (2017).

  117. Krut, O. & Bekeredjian-Ding, I. Contribution of the immune response to phage therapy. J. Immunol. 200, 3037–3044 (2018).

    CAS  PubMed  Google Scholar 

  118. Dufour, N. et al. Phage therapy of pneumonia is not associated with an overstimulation of the inflammatory response compared to antibiotic treatment in mice. Antimicrob. Agents Chemother. 63, e00379-19 (2019).

  119. Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299 e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Miernikiewicz, P. et al. T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS ONE 8, e71036 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hodyra-Stefaniak, K. et al. Mammalian host-versus-phage immune response determines phage fate in vivo. Sci. Rep. 5, 14802 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    CAS  PubMed  Google Scholar 

  123. Tetz, G. & Tetz, V. Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model. Gut Pathog. 8, 33 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Jahn, M. T. et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26, 542–550.e5 (2019).

    CAS  PubMed  Google Scholar 

  125. Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).

  126. Hosseinidoust, Z., van de Ven, T. G. & Tufenkji, N. Evolution of Pseudomonas aeruginosa virulence as a result of phage predation. Appl. Environ. Microbiol. 79, 6110–6116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Secor, P. R. et al. Filamentous bacteriophage produced by Pseudomonas aeruginosa alters the inflammatory response and promotes noninvasive infection in vivo. Infect. Immun. 85, e00648-16 (2017).

  128. Roach, D. R. et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38–47.e4 (2017).

    CAS  PubMed  Google Scholar 

  129. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rodriguez-Brito, B. et al. Viral and microbial community dynamics in four aquatic environments. ISME J. 4, 739–751 (2010).

    PubMed  Google Scholar 

  132. Sutton, T. D. S. et al. Choice of assembly software has a critical impact on virome characterisation. Microbiome 7, 12 (2019).

    PubMed  PubMed Central  Google Scholar 

  133. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).

    CAS  PubMed  Google Scholar 

  135. Le Roy, T. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62, 1787–1794 (2013).

    PubMed  Google Scholar 

  136. Kåhrström, C. T., Pariente, N. & Weiss, U. Intestinal microbiota in health and disease. Nature 535, 47–47 (2016).

    PubMed  Google Scholar 

  137. Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cornuault, J. K. et al. Phages infecting Faecalibacterium prausnitzii belong to novel viral genera that help to decipher intestinal viromes. Microbiome 6, 65 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Eaton, M. D. & B.-J., S. Bacteriophage therapy. Review of the principles and results of the use of bacteriophage in the treatment of infections. JAMA 23, 1769–1776 (1934).

    Google Scholar 

  141. Debattista, J. Phage therapy: where East meets West. Expert Rev. Anti Infect. Ther. 2, 815–819 (2004).

    PubMed  Google Scholar 

  142. Watanabe, R. et al. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob. Agents Chemother. 51, 446–452 (2007).

    CAS  PubMed  Google Scholar 

  143. Lood, R. et al. Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrobial Agents Chemother. 59, 1983–1991 (2015).

    CAS  Google Scholar 

  144. Jun, J. W. et al. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J. Infect. Dis. 210, 72–78 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Nale, J. Y. et al. Bacteriophage combinations significantly reduce clostridium difficile growth in vitro and proliferation in vivo. Antimicrob. Agents Chemother. 60, 968–981 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wills, Q. F., Kerrigan, C. & Soothill, J. S. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother. 49, 1220–1221 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, J. et al. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum beta-lactamase-producing Escherichia coli bacteremia. Int. J. Mol. Med. 17, 347–355 (2006).

    PubMed  Google Scholar 

  148. Biswas, B. et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70, 204–210 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, J. et al. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int J. Mol. Med. 17, 309–317 (2006).

    PubMed  Google Scholar 

  150. Dąbrowska, K. & Abedon, S. T. Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol. Mol. Biol. Rev. 83, e00012–e00019 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. Capparelli, R. et al. Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin. Microbiol. Infect. 12, 248–253 (2006).

    CAS  PubMed  Google Scholar 

  152. Hodyra-Stefaniak, K. et al. Bacteriophages engineered to display foreign peptides may become short-circulating phages. Microb. Biotechnol. 12, 730–741 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chhibber, S., Kaur, S. & Kumari, S. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J. Med. Microbiol. 57, 1508–1513 (2008).

    PubMed  Google Scholar 

  154. Wolochow, H., Hildebrand, G. J. & Lamanna, C. Translocation of microorganisms across the intestinal wall of the rat: effect of microbial size and concentration. J. Infect. Dis. 116, 523–528 (1966).

    CAS  PubMed  Google Scholar 

  155. Sarker, S. A. et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4, 124–137 (2016).

    PubMed  PubMed Central  Google Scholar 

  156. Bruttin, A. & Brüssow, H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob. Agents Chemother. 49, 2874–2878 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Cao, F. et al. Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. BioMed. Res. Int. 2015, 752930 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Debarbieux, L. et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J. Infect. Dis. 201, 1096–1104 (2010).

    CAS  PubMed  Google Scholar 

  159. Liu, K. Y. et al. Inhalation study of mycobacteriophage D29 aerosol for mice by endotracheal route and nose-only exposure. J. Aerosol Med. Pulm. Drug Deliv. 29, 393–405 (2016).

    PubMed  Google Scholar 

  160. Nishikawa, H. et al. T-even-related bacteriophages as candidates for treatment of Escherichia coli urinary tract infections. Arch. Virol. 153, 507–515 (2008).

    CAS  PubMed  Google Scholar 

  161. Nobrega, F. L. et al. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 16, 760–773 (2018).

    CAS  PubMed  Google Scholar 

  162. Rhoads, D. D. et al. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J. Wound Care 18, 237–238 (2009).

    CAS  PubMed  Google Scholar 

  163. Sarker, S. A. et al. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology 434, 222–232 (2012).

    CAS  PubMed  Google Scholar 

  164. Ando, H. et al. Engineering modular viral scaffolds for targeted bacterial population editing. https://www.biorxiv.org/content/10.1101/020891v1.full (2015).

  165. Mahichi, F. et al. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol. Lett. 295, 211–217 (2009).

    CAS  PubMed  Google Scholar 

  166. Yoichi, M. et al. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J. Biotechnol. 115, 101–107 (2005).

    CAS  PubMed  Google Scholar 

  167. Kelly, C. R. et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am. J. Gastroenterol. 109, 1065–1071 (2014).

    PubMed  PubMed Central  Google Scholar 

  168. van Nood, E. et al. Duodenal infusion of donor feces for recurrent clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    PubMed  Google Scholar 

  169. Allegretti, J. R. et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial. Am. J. Gastroenterol. 114, 1071–1079 (2019).

    PubMed  Google Scholar 

  170. Aroniadis, O. C. et al. Faecal microbiota transplantation for diarrhoea-predominant irritable bowel syndrome: a double-blind, randomised, placebo-controlled trial. Lancet Gastroenterol. Hepatol. 4, 675–685 (2019).

    PubMed  Google Scholar 

  171. Huttner, B. D. et al. A 5-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: a randomized clinical trial. Clin. Microbiol Infect. 25, 830–838 (2019).

    CAS  PubMed  Google Scholar 

  172. Yu, E. W. et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med 17, e1003051 (2020).

    PubMed  PubMed Central  Google Scholar 

  173. Broecker, F. et al. Stable core virome despite variable microbiome after fecal transfer. Gut Microbes 8, 214–220 (2017).

    PubMed  Google Scholar 

  174. Draper, L. A. et al. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 6, 220 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Zuo, T. et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634–643 (2018).

    CAS  PubMed  Google Scholar 

  176. Lin, D. M. et al. Transplanting fecal virus-like particles reduces high-fat diet-induced small intestinal bacterial overgrowth in mice. Front. Cell Infect. Microbiol. 9, 348 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Džunková, M. et al. Defining the human gut host-phage network through single-cell viral tagging. Nat. Microbiol. 4, 2192–2203 (2019).

    PubMed  Google Scholar 

  178. Johnson, C. N. & Duerkop, B. A. Dyeing to connect. Nat. Microbiol. 4, 2033–2034 (2019).

    PubMed  PubMed Central  Google Scholar 

  179. Moelling, K., Broecker, F. & Willy, C. A wake-up call: we need phage therapy now. Viruses 10, 688 (2018).

  180. Chaudhry, W. N. et al. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS ONE 12, e0168615 (2017).

    PubMed  PubMed Central  Google Scholar 

  181. Oechslin, F. et al. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa Infection in endocarditis and reduces virulence. J. Infect. Dis. 215, 703–712 (2017).

    CAS  PubMed  Google Scholar 

  182. Regeimbal, J. M. et al. Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrob. Agents Chemother. 60, 5806–5816 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Horváth, M. et al. Identification of a newly isolated lytic bacteriophage against K24 capsular type, carbapenem resistant Klebsiella pneumoniae isolates. Sci. Rep. 10, 5891 (2020).

    PubMed  PubMed Central  Google Scholar 

  184. Bao, J. et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerg. Microbes Infect. 9, 771–774 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial Agents Chemother. 61, e00954–17 (2017).

    CAS  Google Scholar 

  186. Chan, B. K. et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 60–66 (2018).

    PubMed  PubMed Central  Google Scholar 

  187. Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Cooper, C. J., Khan Mirzaei, M. & Nilsson, A. S. Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol 7, 1209 (2016).

  189. Furfaro, L. L., Payne, M. S. & Chang, B. J. Bacteriophage therapy: clinical trials and regulatory hurdles. Front. Cell. Infect. Microbiol. 8, 376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Pelfrene, E. et al. Bacteriophage therapy: a regulatory perspective. J. Antimicrobial Chemother. 71, 2071–2074 (2016).

    Google Scholar 

  191. Khan Mirzaei, M. & Nilsson, A. S. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10, e0118557 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. Parracho, H. M. et al. The role of regulated clinical trials in the development of bacteriophage therapeutics. J. Mol. Genet. Med. 6, 279–286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Dąbrowska, K. et al. Immunogenicity studies of proteins forming the T4 phage head surface. J. Virol. 88, 12551–12557 (2014).

    PubMed  PubMed Central  Google Scholar 

  194. Górski, A. et al. Phage as a modulator of immune responses: practical implications for phage therapy. Adv. Virus Res. 83, 41–71 (2012).

    PubMed  Google Scholar 

  195. Beaudoin, J. & Pratt, D. Antiserum inactivation of electrophoretically purified M13 diploid virions: model for the F-specific filamentous bacteriophages. J. Virol. 13, 466–469 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Araya, D. V. et al. Deletion of a prophage-like element causes attenuation of Salmonella enterica serovar Enteritidis and promotes protective immunity. Vaccine 28, 5458–5466 (2010).

    CAS  PubMed  Google Scholar 

  197. Capparelli, R. et al. Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS ONE 5, e11720 (2010).

    PubMed  PubMed Central  Google Scholar 

  198. Won, G. et al. A Salmonella Typhi ghost induced by the E gene of phage phiX174 stimulates dendritic cells and efficiently activates the adaptive immune response. J. Vet. Sci. 19, 536–542 (2018).

    PubMed  PubMed Central  Google Scholar 

  199. Yang, H. et al. Staphylococcus aureus virulence attenuation and immune clearance mediated by a phage lysin-derived protein. EMBO J. 37, e98045 (2018)

  200. Yang, Y. et al. A small mycobacteriophage-derived peptide and its improved isomer restrict mycobacterial infection via dual mycobactericidal-immunoregulatory activities. J. Biol. Chem. 294, 7615–7631 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Tian, M. et al. B cell-intrinsic MyD88 signaling promotes initial cell proliferation and differentiation to enhance the germinal center response to a virus-like particle. J. Immunol. 200, 937–948 (2018).

    CAS  PubMed  Google Scholar 

  202. Chen, F. et al. Recombinant phage elicits protective immune response against systemic S. globosa infection in mouse model. Sci. Rep. 7, 42024 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Sartorius, R. et al. Antigen delivery by filamentous bacteriophage fd displaying an anti-DEC-205 single-chain variable fragment confers adjuvanticity by triggering a TLR9-mediated immune response. EMBO Mol. Med. 7, 973–988 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Barksdale, L. & Arden, S. B. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu. Rev. Microbiol. 28, 265–299 (1974).

    CAS  PubMed  Google Scholar 

  205. Freeman, V. J. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 61, 675–688 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang, X. et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 147 (2010).

    PubMed  PubMed Central  Google Scholar 

  207. Beutin, L., Stroeher, U. H. & Manning, P. A. Isolation of enterohemolysin (Ehly2)-associated sequences encoded on temperate phages of Escherichia coli. Gene 132, 95–99 (1993).

    CAS  PubMed  Google Scholar 

  208. Hayashi, T. et al. Molecular analysis of a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa: structure of the attP-cos-ctx region and integration into the serine tRNA gene. Mol. Microbiol. 7, 657–667 (1993).

    CAS  PubMed  Google Scholar 

  209. Coleman, D. C. et al. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135, 1679–1697 (1989).

    CAS  PubMed  Google Scholar 

  210. Clark, C. A., Beltrame, J. & Manning, P. A. The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene 107, 43–52 (1991).

    CAS  PubMed  Google Scholar 

  211. McShan, W. M. & Ferretti, J. J. Genetic diversity in temperate bacteriophages of Streptococcus pyogenes: identification of a second attachment site for phages carrying the erythrogenic toxin A gene. J. Bacteriol. 179, 6509–6511 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Figueroa-Bossi, N. et al. Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol. Microbiol. 39, 260–271 (2001).

    CAS  PubMed  Google Scholar 

  213. Figueroa-Bossi, N., Ammendola, S. & Bossi, L. Differences in gene expression levels and in enzymatic qualities account for the uneven contribution of superoxide dismutases SodCI and SodCII to pathogenicity in Salmonella enterica. Microbes Infect. 8, 1569–1578 (2006).

    CAS  PubMed  Google Scholar 

  214. Pelludat, C., Mirold, S. & Hardt, W. D. The SopEPhi phage integrates into the ssrA gene of Salmonella enterica serovar Typhimurium A36 and is closely related to the Fels-2 prophage. J. Bacteriol. 185, 5182–5191 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Strauch, E., Lurz, R. & Beutin, L. Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei. Infect. Immun. 69, 7588–7595 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Das, B., Bischerour, J. & Barre, F. X. Molecular mechanism of acquisition of the cholera toxin genes. Indian J. Med. Res. 133, 195–200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Krom, R. J. et al. Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett. 15, 4808–4813 (2015).

    CAS  PubMed  Google Scholar 

  218. Sarker, S. A. & Brüssow, H. From bench to bed and back again: phage therapy of childhood Escherichia coli diarrhea. Ann. N. Y. Acad. Sci. 1372, 42–52 (2016).

    PubMed  Google Scholar 

  219. Schneider, G. et al. Kinetics of targeted phage rescue in a mouse model of systemic Escherichia coli K1. BioMed. Res. Int. 2018, 7569645 (2018).

    PubMed  PubMed Central  Google Scholar 

  220. Kumari, S., Harjai, K. & Chhibber, S. Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae. J. Microbiol Biotechnol. 19, 622–628 (2009).

    CAS  PubMed  Google Scholar 

  221. Takemura-Uchiyama, I. et al. Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect. 16, 512–517 (2014).

    CAS  PubMed  Google Scholar 

  222. Kishor, C. et al. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J. Med. Res. 143, 87–94 (2016).

    PubMed  PubMed Central  Google Scholar 

  223. McVay, C. S., Velásquez, M. & Fralick, J. A. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrobial agents Chemother. 51, 1934–1938 (2007).

    CAS  Google Scholar 

  224. Wright, A. et al. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. 34, 349–357 (2009).

    CAS  PubMed  Google Scholar 

  225. Cafora, M. et al. Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Sci. Rep. 9, 1527 (2019).

    PubMed  PubMed Central  Google Scholar 

  226. Mai, V. et al. Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota. Bacteriophage 5, e1088124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Hurwitz, B. L. et al. Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ. Microbiol. 15, 1428–1440 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Parras-Moltó, M. et al. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. Microbiome 6, 119 (2018).

    PubMed  PubMed Central  Google Scholar 

  229. Solonenko, S. A. & Sullivan, M. B. Preparation of metagenomic libraries from naturally occurring marine viruses. Methods Enzymol. 531, 143–165 (2013).

    CAS  PubMed  Google Scholar 

  230. Kleiner, M., Hooper, L. V. & Duerkop, B. A. Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genom. 16, 7 (2015).

    Google Scholar 

  231. Rosseel, T. et al. Evaluation of convenient pretreatment protocols for RNA virus metagenomics in serum and tissue samples. J. Virol. Methods 222, 72–80 (2015).

    CAS  PubMed  Google Scholar 

  232. Sachsenröder, J. et al. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing. PLoS ONE 7, e34631 (2012).

    PubMed  PubMed Central  Google Scholar 

  233. Conceição-Neto, N. et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Sci. Rep. 5, 16532 (2015).

    PubMed  PubMed Central  Google Scholar 

  234. Stinson, L. F., Keelan, J. A. & Payne, M. S. Identification and removal of contaminating microbial DNA from PCR reagents: impact on low-biomass microbiome analyses. Lett. Appl. Microbiol. 68, 2–8 (2019).

    CAS  PubMed  Google Scholar 

  235. Džunková, M., D’Auria, G. & Moya, A. Direct sequencing of human gut virome fractions obtained by flow cytometry. Front. Microbiol. 6, 955 (2015).

  236. Hurwitz, B. L., U’Ren, J. M. & Youens-Clark K. Computational prospecting the great viral unknown. FEMS Microbiol. Lett. 363, fnw077 (2016).

  237. Sutton, T. D. S. & Hill, C. Gut bacteriophage: current understanding and challenges. Front. Endocrinol. 10, 784 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank the members of the Elinav laboratory for discussions and apologize for authors whose work was not cited because of space constraints. S.P.N is funded by an EMBO Long-term Fellowship ALTF 767–2017. E.E. is the incumbent of the Sir Marc and Lady Tania Feldmann Professorial Chair, a senior fellow at the Canadian Institute of Advanced Research (CIFAR) and an international scholar at the Bill & Melinda Gates Foundation and the Howard Hughes Medical Institute (HHMI).

Author information

Authors and Affiliations

Authors

Contributions

All authors performed an extensive literature research, contributed substantially to discussion of the content, and wrote and edited the manuscript.

Corresponding author

Correspondence to Eran Elinav.

Ethics declarations

Competing interests

E.E. is a salaried scientific consultant for DayTwo and BiomX. S.F. and S.P.N. have nothing to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Federici, S., Nobs, S.P. & Elinav, E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 18, 889–904 (2021). https://doi.org/10.1038/s41423-020-00532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-00532-4

Keywords

This article is cited by

Search

Quick links