Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The inhibitor effect of RKIP on inflammasome activation and inflammasome-dependent diseases

Abstract

Aberrant inflammasome activation contributes to the pathogenesis of various human diseases, including atherosclerosis, gout, and metabolic disorders. Elucidation of the underlying mechanism involved in the negative regulation of the inflammasome is important for developing new therapeutic targets for these diseases. Here, we showed that Raf kinase inhibitor protein (RKIP) negatively regulates the activation of the NLRP1, NLRP3, and NLRC4 inflammasomes. RKIP deficiency enhanced caspase-1 activation and IL-1β secretion via NLRP1, NLRP3, and NLRC4 inflammasome activation in primary macrophages. The overexpression of RKIP in THP-1 cells inhibited NLRP1, NLRP3, and NLRC4 inflammasome activation. RKIP-deficient mice showed increased sensitivity to Alum-induced peritonitis and Salmonella typhimurium-induced inflammation, indicating that RKIP inhibits NLRP3 and NLRC4 inflammasome activation in vivo. Mechanistically, RKIP directly binds to apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and competes with NLRP1, NLRP3, or NLRC4 to interact with ASC, thus interrupting inflammasome assembly and activation. The depletion of RKIP aggravated inflammasome-related diseases such as monosodium urate (MSU)-induced gouty arthritis and high-fat diet (HFD)-induced metabolic disorders. Furthermore, the expression of RKIP was substantially downregulated in patients with gouty arthritis or type 2 diabetes (T2D) compared to healthy controls. Collectively, our findings suggest that RKIP negatively regulates NLRP1, NLRP3, and NLRC4 inflammasome activation and is a potential therapeutic target for the treatment of inflammasome-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gross, O., Thomas, C. J., Guarda, G. & Tschopp, J. The inflammasome: an integrated view. Immunol. Rev. 243, 136–151, https://doi.org/10.1111/j.1600-065X.2011.01046.x (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454, https://doi.org/10.1038/ni.2550 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Guo, H. T., Callaway, J. B. & Ting, J. P. Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687, https://doi.org/10.1038/nm.3893 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davis, B. K., Wen, H. T. & Ting, J. P. Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707–735, https://doi.org/10.1146/annurev-immunol-031210-101405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–U146, https://doi.org/10.1038/nature10558 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249, https://doi.org/10.1126/science.1240248 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Khare, S., Luc, N., Dorfleutner, A. & Stehlik, C. Inflammasomes and their activation. Crit. Rev. Immunol. 30, 463–487, https://doi.org/10.1615/CritRevImmunol.v30.i5.50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11, 385–394, https://doi.org/10.1038/ni.1859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Nardo, D. & Latz, E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 32, 373–379 (2011).

    Article  Google Scholar 

  10. Yan, Y. Q. et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62–73, https://doi.org/10.1016/j.cell.2014.11.047 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–U1357 (2010).

    Article  CAS  Google Scholar 

  12. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241, https://doi.org/10.1038/nature04516 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678, https://doi.org/10.1038/nature11729 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1 beta in type 2 diabetes. Nat. Immunol. 11, 897–U1501, https://doi.org/10.1038/ni.1935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255, https://doi.org/10.1038/nm.3806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Youm, Y. H. et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269, https://doi.org/10.1038/nm.3804 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Daniels, M. J. D. et al. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun. 7, 12504(2016).

    Article  CAS  Google Scholar 

  18. Bernier, I. & Jolles, P. Purification and characterization of a Basic 23 Kda cytosolic protein from bovine brain. Biochim. Biophys. Acta 790, 174–181, https://doi.org/10.1016/0167-4838(84)90221-8 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Serre, L. et al. Crystal structures of YBHB and YBCL from Escherichia coli, two bacterial homologues to a Raf kinase inhibitor protein. J. Mol. Biol. 310, 617–634, https://doi.org/10.1006/jmbi.2001.4784 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Yeung, K. et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401, 173–177 (1999).

    Article  CAS  Google Scholar 

  21. Trakul, N., Menard, R. E., Schade, G. R., Qian, Z. H. & Rosner, M. R. Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J. Biol. Chem. 280, 24931–24940, https://doi.org/10.1074/jbc.M413929200 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Lorenz, K., Lohse, M. J. & Quitterer, U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 426, 574–579, https://doi.org/10.1038/nature02158 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Al-Mulla, F. et al. Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3 beta. Cancer Res. 71, 1334–1343, https://doi.org/10.1158/0008-5472.CAN-10-3102 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Yeung, K. C. et al. Raf kinase inhibitor protein interacts with NF-kappa B-inducing kinase and TAK1 and inhibits NF-kappa 13 activation. Mol. Cell. Biol. 21, 7207–7217, https://doi.org/10.1128/Mcb.21.21.7207-7217.2001 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng, L. C., Imamoto, A. & Rosner, M. R. Raf kinase inhibitory protein (RKIP): a physiological regulator and future therapeutic target. Expert Opin. Ther. Target 12, 1275–1287, https://doi.org/10.1517/14728222.12.10.1275 (2008).

    Article  CAS  Google Scholar 

  26. Al-Mulla, F., Bitar, M. S., Taqi, Z. & Yeung, K. C. RKIP: much more than Raf kinase inhibitory protein. J. Cell Physiol. 228, 1688–1702, https://doi.org/10.1002/jcp.24335 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Lin, W. L. et al. Raf kinase inhibitor protein mediates intestinal epithelial cell apoptosis and promotes IBDs in humans and mice. Gut 66, 597–610, https://doi.org/10.1136/gutjnl-2015-310096 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Gu, M. et al. RKIP and TBK1 form a positive feedback loop to promote type I interferon production in innate immunity. EMBO J. 35, 2553–2565, https://doi.org/10.15252/embj.201694060 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai, R. et al. Raf kinase inhibitor protein preferentially promotes TLR3-triggered signaling and inflammation. J. Immunol. 198, 4086–4095, https://doi.org/10.4049/jimmunol.1601672 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, W. L. et al. Raf kinase inhibitor protein negatively regulates FceRI-mediated mast cell activation and allergic response. Proc. Natl Acad. Sci. USA 115, E9859–E9868, https://doi.org/10.1073/pnas.1805474115 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, W. L. et al. RKIP mediates autoimmune inflammation by positively regulating IL-17R signaling. EMBO Rep. 19, e44951 (2018).

    Article  Google Scholar 

  32. Man, S. M., Karki, R. & Kanneganti, T. D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277, 61–75 (2017).

    Article  CAS  Google Scholar 

  33. Caraffini, V. et al. Loss of RAF kinase inhibitor protein is involved in myelomonocytic differentiation an aggravates RAS-driven myeloid leukemogenesis. Haematologica 105, 375–386 (2020).

    Article  CAS  Google Scholar 

  34. Reber, L. L. et al. Contribution of mast cell-derived interleukin-1 beta to uric acid crystal-induced acute arthritis in mice. Arthritis Rheumatol. 66, 2881–2891 (2014).

    Article  CAS  Google Scholar 

  35. He, H. B. et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 9, 2550 (2018).

    Article  Google Scholar 

  36. Huang, Y. & Rong, R. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. Eur. J. Immunol. 49, 1892–1892 (2019).

    Google Scholar 

  37. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–U214, https://doi.org/10.1038/nm.2279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286, https://doi.org/10.1038/nature10759 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Jin, J. et al. LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I-mediated caspase-1 inhibition. Nat. Commun. 4, 2075. https://doi.org/10.1038/Ncomms3075 (2013).

  40. Vande Walle, L. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69–73, https://doi.org/10.1038/nature13322 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, C. S. et al. Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome. Nature Commun. 6, 6115. https://doi.org/10.1038/Ncomms7115 (2015).

  42. Huai, W. W. et al. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nature Commun. 5, 4738. https://doi.org/10.1038/Ncomms5738 (2014).

  43. Lorden, G. et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X(7) receptor activation. J. Exp. Med. 214, 511–528, https://doi.org/10.1084/jem.20161452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mao, K. R. et al. beta-arrestin1 is critical for the full activation of NLRP3 and NLRC4 inflammasomes. J. Immunol. 194, 1867–1873, https://doi.org/10.4049/jimmunol.1401989 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574, https://doi.org/10.1038/nature02166 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor John Sedivy for the Rkip-knockout mice, Professor Kam C. Yeung for the Rkipf/f mice and Dr Rongbin Zhou for the plasmids. This work was supported by the National Natural Science Foundation of China (81972733) and the Natural Science Foundation of Zhejiang Province (LY19H160048).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and H.Y. designed the research; Q.Q., H.L., J.S., and Y.J. performed the research; X.W. and Q.Q. analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Hong Yu or Xiaojian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Q., Liu, H., Shou, J. et al. The inhibitor effect of RKIP on inflammasome activation and inflammasome-dependent diseases. Cell Mol Immunol 18, 992–1004 (2021). https://doi.org/10.1038/s41423-020-00525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-00525-3

Keywords

This article is cited by

Search

Quick links