Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HBsAg-specific CD8+ T cells as an indispensable trigger to induce murine hepatocellular carcinoma

Abstract

Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) is mediated by an inappropriate attack by HBV-specific T cells in patients. However, this immunopathogenic process has not been clarified because of the lack of a suitable animal model. Here, we used immunocompetent Fah−/− mice as the recipients in the adoptive transfer of HBsAg+ hepatocytes from HBs-Tg mice to replace the recipient hepatocytes (HBs-HepR). HBs-HepR mice exhibited persistent HBsAg expression with chronic hepatitis and eventually developed HCC with a prevalence of 100%. HBsAg-specific CD8+ T cells were generated and specifically and continuously induced hepatocyte apoptosis with progressive chronic inflammation, and the depletion of CD8+ T cells or their deficiency prevented HCC, which could then be reproduced by the transfer of HBsAg-specific CD8+ T cells. In summary, our results demonstrated that CD8+ T cells plays a critical role in HBsAg-driven inflammtion and HCC tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Raw sequencing data have been deposited in GEO Datasets with the GEO accession number GSE130880.

References

  1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  2. El-Serag, H. B. & Rudolph, K. L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557–2576 (2007).

    CAS  PubMed  Google Scholar 

  3. Venook, A. P., Papandreou, C., Furuse, J. & de Guevara, L. L. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 15(Suppl. 4), 5–13 (2010).

    PubMed  Google Scholar 

  4. Sung, W. K. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769 (2012).

    CAS  PubMed  Google Scholar 

  5. Amaddeo, G. et al. Integration of tumour and viral genomic characterizations in HBV-related hepatocellular carcinomas. Gut 64, 820–829 (2015).

    CAS  PubMed  Google Scholar 

  6. Guidotti, L. G. et al. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4, 25–36 (1996).

    CAS  PubMed  Google Scholar 

  7. Ando, K. et al. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J. Exp. Med. 178, 1541–1554 (1993).

    CAS  PubMed  Google Scholar 

  8. Maini, M. K. et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191, 1269–1280 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakamoto, Y., Guidotti, L. G., Kuhlen, C. V., Fowler, P. & Chisari, F. V. Immune pathogenesis of hepatocellular carcinoma. J. Exp. Med. 188, 341–350 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bertoletti, A. & Ferrari, C. Adaptive immunity in HBV infection. J. Hepatol. 64, S71–S83 (2016).

    CAS  PubMed  Google Scholar 

  11. Guidotti, L. G. et al. Viral clearance without destruction of infected cells during acute HBV infection. Science 284, 825–829 (1999).

    CAS  PubMed  Google Scholar 

  12. Guidotti, L. G. & Chisari, F. V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001).

    CAS  PubMed  Google Scholar 

  13. Thimme, R. et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77, 68–76 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mason, W. S. et al. HBV DNA integration and clonal hepatocyte expansion in chronic hepatitis B patients considered immune tolerant. Gastroenterology 151, 986–998, e984 (2016).

    CAS  PubMed  Google Scholar 

  15. Bertoletti, A., Kennedy, P. T. F. & Durantel, D. HBV infection and HCC: the ‘dangerous liaisons’. Gut 67, 787–788 (2018).

    CAS  PubMed  Google Scholar 

  16. Zoulim, F. & Mason, W. S. Reasons to consider earlier treatment of chronic HBV infections. Gut 61, 333–336 (2012).

    CAS  PubMed  Google Scholar 

  17. Guidotti, L. G. & Chisari, F. V. Immunobiology and pathogenesis of viral hepatitis. Annu. Rev. Pathol. 1, 23–61 (2006).

    CAS  PubMed  Google Scholar 

  18. Lim, C. J. et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 68, 916–927 (2019).

    CAS  PubMed  Google Scholar 

  19. Park, J. J. et al. Hepatitis B virus-specific and global T-cell dysfunction in chronic hepatitis B. Gastroenterology 150, 684–695, e685 (2016).

    CAS  PubMed  Google Scholar 

  20. Boni, C. et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 81, 4215–4225 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fisicaro, P. et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 138, 682–693, 693 e681–684 (2010).

    CAS  PubMed  Google Scholar 

  22. Reignat, S. et al. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J. Exp. Med. 195, 1089–1101 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuch, A. et al. Phenotypic and functional differences of HBV core-specific versus HBV polymerase-specific CD8+ T cells in chronically HBV-infected patients with low viral load. Gut 68, 905–915 (2019).

    CAS  PubMed  Google Scholar 

  24. Hoogeveen, R. C. et al. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut 68, 893–904 (2019).

    CAS  PubMed  Google Scholar 

  25. Cheng, Y. et al. Multifactorial heterogeneity of virus-specific T cells and association with the progression of human chronic hepatitis B infection. Sci. Immunol. 4, eaau6905 (2019).

  26. Kim, G. A. et al. High risk of hepatocellular carcinoma and death in patients with immune-tolerant-phase chronic hepatitis B. Gut 67, 945–952 (2018).

    CAS  PubMed  Google Scholar 

  27. Webster, G. J. et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J. Virol. 78, 5707–5719 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sitia, G. et al. Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc. Natl Acad. Sci. USA 109, E2165–E2172 (2012).

    CAS  PubMed  Google Scholar 

  29. Sun, H., Sun, C., Xiao, W. & Sun, R. Tissue-resident lymphocytes: from adaptive to innate immunity. Cell. Mol. Immunol. 16, 205–215 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guidotti, L. G., Matzke, B., Schaller, H. & Chisari, F. V. High-level hepatitis B virus replication in transgenic mice. J. Virol. 69, 6158–6169 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chisari, F. V. et al. Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. J. Virol. 60, 880–887 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Isogawa, M., Chung, J., Murata, Y., Kakimi, K. & Chisari, F. V. CD40 activation rescues antiviral CD8(+) T cells from PD-1-mediated exhaustion. PLoS Pathog. 9, e1003490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakamoto, Y. et al. Prevention of hepatocellular carcinoma development associated with chronic hepatitis by anti-fas ligand antibody therapy. J. Exp. Med. 196, 1105–1111 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, L. R. et al. Transfer of HBV genomes using low doses of adenovirus vectors leads to persistent infection in immune competent mice. Gastroenterology 142, 1447–1450, e1443 (2012).

    CAS  PubMed  Google Scholar 

  35. Huang, L. R., Wu, H. L., Chen, P. J. & Chen, D. S. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc. Natl Acad. Sci. USA 103, 17862–17867 (2006).

    CAS  PubMed  Google Scholar 

  36. Yang, P. L., Althage, A., Chung, J. & Chisari, F. V. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc. Natl Acad. Sci. USA 99, 13825–13830 (2002).

    CAS  PubMed  Google Scholar 

  37. Brown, Z. J., Heinrich, B. & Greten, T. F. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat. Rev. Gastroenterol. Hepatol. 15, 536–554 (2018).

    CAS  PubMed  Google Scholar 

  38. Azuma, H. et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat. Biotechnol. 25, 903–910 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, M. C. S. et al. The changing epidemiology of liver diseases in the Asia-Pacific region. Nat. Rev. Gastroenterol. Hepatol. 16, 57–73 (2019).

    PubMed  Google Scholar 

  40. Rehermann, B. & Thimme, R. Insights from antiviral therapy into immune responses to hepatitis B and C virus infection. Gastroenterology 156, 369–383 (2019).

    CAS  PubMed  Google Scholar 

  41. Gehring, A. J. & Protzer, U. Targeting innate and adaptive immune responses to cure chronic HBV infection. Gastroenterology 156, 325–337 (2019).

    CAS  PubMed  Google Scholar 

  42. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Isogawa, M., Furuichi, Y. & Chisari, F. V. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver. Immunity 23, 53–63 (2005).

    CAS  PubMed  Google Scholar 

  44. Guidotti, L. G. et al. Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell 161, 486–500 (2015).

    CAS  PubMed  Google Scholar 

  45. Zong, L. et al. Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nat. Commun. 10, 221 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Jaruga, B., Hong, F., Kim, W. H. & Gao, B. IFN-gamma/STAT1 acts as a proinflammatory signal in T cell-mediated hepatitis via induction of multiple chemokines and adhesion molecules: a critical role of IRF-1. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1044–G1052 (2004).

    CAS  PubMed  Google Scholar 

  47. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhexiong Lian for providing the CD8 KO mice and Dr. Xin Wang for providing the Fah KO mice. We thank the NIH tetramer core facility for kindly providing HBsAg-Tetramer used in this study. This work was supported by the Chinese Academy of Science (XDB29030201), the National Key R&D Program of China (2018YFA0507403, 2017ZX10202203-009-002), and the Natural Science Foundation of China (#81788101, 81671554, 91542000, 81821001).

Author information

Authors and Affiliations

Authors

Contributions

X.H., Y.C., L.B., R.S., and Z.T. initiated and designed the research. X.H., Y.C., R.S., and Z.T. wrote the manuscript. X.H. and L.B. performed all the experiments and analyzed and interpreted the results. H.W. contributed to the discussion of the results.

Corresponding authors

Correspondence to Rui Sun or Zhigang Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Chen, Y., Bai, L. et al. HBsAg-specific CD8+ T cells as an indispensable trigger to induce murine hepatocellular carcinoma. Cell Mol Immunol 18, 128–137 (2021). https://doi.org/10.1038/s41423-019-0330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0330-1

Keywords

This article is cited by

Search

Quick links