Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-33/33* inhibit the activation of MAVS through AMPK in antiviral innate immunity

Abstract

Innate immunity plays a prominent role in the host defense against pathogens and must be precisely regulated. As vital orchestrators in cholesterol homeostasis, microRNA-33/33* have been widely investigated in cellular metabolism. However, their role in antiviral innate immunity is largely unknown. Here, we report that VSV stimulation decreased the expression of miR-33/33* through an IFNAR-dependent manner in macrophages. Overexpression of miR-33/33* resulted in impaired RIG-I signaling, enhancing viral load and lethality whereas attenuating type I interferon production both in vitro and in vivo. In addition, miR-33/33* specifically prevented the mitochondrial adaptor mitochondrial antiviral-signaling protein (MAVS) from forming activated aggregates by targeting adenosine monophosphate activated protein kinase (AMPK), subsequently impeding the mitophagy-mediated elimination of damaged mitochondria and disturbing mitochondrial homeostasis which is indispensable for efficient MAVS activation. Our findings establish miR-33/33* as negative modulators of the RNA virus-triggered innate immune response and identify a previously unknown regulatory mechanism linking mitochondrial homeostasis with antiviral signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goubau, D., Deddouche, S. & Reis e Sousa, C. Cytosolic sensing of viruses. Immunity 38, 855–869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Paludan, S. R. & Bowie, A. G. Immune sensing of DNA. Immunity 38, 870–880 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bowie, A. G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 8, 911–922 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  5. Takeuchi, O. & Akira, S. MDA5/RIG-I and virus recognition. Curr. Opin. Immunol. 20, 17–22 (2008).

    CAS  PubMed  Google Scholar 

  6. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu Rev. Immunol. 33, 257–290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Loo, Y. M. & Gale, M. Jr. Immune signaling by RIG-I-like receptors. Immunity 34, 680–692 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawasaki, T., Kawai, T. & Akira, S. Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity. Immunol. Rev. 243, 61–73 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao, X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16, 35–50 (2016).

    CAS  PubMed  Google Scholar 

  10. Kloosterman, W. P. & Plasterk, R. H. The diverse functions of microRNAs in animal development and disease. Dev. Cell 11, 441–450 (2006).

    CAS  PubMed  Google Scholar 

  11. Baltimore, D., Boldin, M. P., O’Connell, R. M., Rao, D. S. & Taganov, K. D. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol. 9, 839–845 (2008).

    CAS  PubMed  Google Scholar 

  12. Nilsen, T. W. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 23, 243–249 (2007).

    CAS  PubMed  Google Scholar 

  13. Winter, J., Jung, S., Keller, S., Gregory, R. I. & Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228–234 (2009).

    CAS  PubMed  Google Scholar 

  14. Horie, T. et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc. Natl. Acad. Sci. USA 107, 17321–17326 (2010).

    CAS  PubMed  Google Scholar 

  15. Najafi-Shoushtari, S. H. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569 (2010).

    CAS  PubMed  Google Scholar 

  16. Marquart, T. J., Allen, R. M., Ory, D. S. & Baldan, A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. USA 107, 12228–12232 (2010).

    CAS  PubMed  Google Scholar 

  17. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Davalos, A. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. USA 108, 9232–9237 (2011).

    CAS  PubMed  Google Scholar 

  19. Ramirez, C. M. et al. MicroRNA 33 regulates glucose metabolism. Mol. Cell Biol. 33, 2891–2902 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ouimet, M. et al. MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Investig. 125, 4334–4348 (2015).

    PubMed  Google Scholar 

  21. Li, T., Francl, J. M., Boehme, S. & Chiang, J. Y. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7alpha-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology 58, 1111–1121 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Karunakaran, D. et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by Anti-miR33 in atherosclerosis. Circ. Res. 117, 266–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Price, N. L. & Fernandez-Hernando, C. Novel role of miR-33 in regulating of mitochondrial function. Circ. Res. 117, 225–228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cameron, A. M., Lawless, S. J. & Pearce, E. J. Metabolism and acetylation in innate immune cell function and fate. Semin. Immunol. 28, 408–416 (2016).

    CAS  PubMed  Google Scholar 

  25. O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Pearce E. J., Pearce E. L. Immunometabolism in 2017: driving immunity: all roads lead to metabolism. Nat. Rev. Immunol. 18, 81–82 (2017).

  27. Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lacy-Hulbert, A. & Moore, K. J. Designer macrophages: oxidative metabolism fuels inflammation repair. Cell Metab. 4, 7–8 (2006).

    CAS  PubMed  Google Scholar 

  29. Lai, L. et al. MicroRNA-33 regulates the innate immune response via ATP binding cassette transporter-mediated remodeling of membrane microdomains. J. Biol. Chem. 291, 19651–19660 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, G. J. et al. NF-kappaB suppresses the expression of ATP-binding cassette transporter A1/G1 by regulating SREBP-2 and miR-33a in mice. Int J. Cardiol. 171, e93–e95 (2014).

    PubMed  Google Scholar 

  31. Ouimet, M. et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat. Immunol. 17, 677–686 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Robertson, K. A. et al. An interferon regulated MicroRNA provides broad cell-intrinsic antiviral immunity through multihit host-directed targeting of the sterol pathway. PLoS Biol. 14, e1002364 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Cai, X. & Chen, Z. J. Prion-like polymerization as a signaling mechanism. Trends Immunol. 35, 622–630 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682 (2005).

    CAS  PubMed  Google Scholar 

  36. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    PubMed  Google Scholar 

  37. Qi, N. et al. Multiple truncated isoforms of MAVS prevent its spontaneous aggregation in antiviral innate immune signalling. Nat. Commun. 8, 15676 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, B. et al. The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination. Nat. Immunol. 18, 214–224 (2017).

    CAS  PubMed  Google Scholar 

  39. Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014).

    CAS  PubMed  Google Scholar 

  40. Moser, T. S., Schieffer, D. & Cherry, S. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog. 8, e1002661 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    CAS  PubMed  Google Scholar 

  42. Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–261 (2011).

    CAS  PubMed  Google Scholar 

  44. McBride, H. M., Neuspiel, M. & Wasiak, S. Mitochondria: more than just a powerhouse. Curr. Biol. 16, R551–R560 (2006).

    CAS  PubMed  Google Scholar 

  45. McWhirter, S. M., Tenoever, B. R. & Maniatis, T. Connecting mitochondria and innate immunity. Cell 122, 645–647 (2005).

    CAS  PubMed  Google Scholar 

  46. Mills, E. L., Kelly, B. & O’Neill, L. A. J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488–498 (2017).

    CAS  PubMed  Google Scholar 

  47. Weinberg, S. E., Sena, L. A. & Chandel, N. S. Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406–417 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Onoguchi, K. et al. Virus-infection or 5’ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLoS Pathog. 6, e1001012 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Castanier, C., Garcin, D., Vazquez, A. & Arnoult, D. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 11, 133–138 (2010).

    CAS  PubMed  Google Scholar 

  50. Koshiba, T., Yasukawa, K., Yanagi, Y. & Kawabata, S. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci. Signal 4, 7 (2011).

    PubMed  Google Scholar 

  51. Blanc, M. et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol. 9, e1000598 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Blanc, M. et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38, 106–118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilkins, C. & Gale, M. Jr. Sterol-izing innate immunity. Immunity 38, 3–5 (2013).

    CAS  PubMed  Google Scholar 

  54. York Autumn, G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. O’Neill, L. A. How low cholesterol is good for anti-viral immunity. Cell 163, 1572–1574 (2015).

    PubMed  Google Scholar 

  56. Chen, L. et al. MicroRNA-223 promotes type I interferon production in antiviral innate immunity by targeting forkhead box protein O3 (FOXO3). J. Biol. Chem. 291, 14706–14716 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Xuetao Cao (Second Military Medical University, Shanghai, China) for the Ifnar−/− mice; professor Wei Liu (Zhejiang University, Hangzhou, China) and Wei Chen (Zhejiang University, Hangzhou, China) for the Mito-YFP and LC3-mCherry plasmids; Guifeng Xiao (Core Facilities, Zhejiang University School of Medicine) and Shuangshuang Liu (Core Facilities, Zhejiang University School of Medicine) for their excellent technical assistance with confocal microscopy; Shasha Chen (Zhejiang University) for help with SDD-AGE; Yuchuan Zhang (Zhejiang University) for help with flow cytometry; and Lijia Zhong (Zhejiang University) and Xinfang He (Zhejiang University) for help with in vivo experiments. This study was supported by the National Natural Science Foundation of China (81401283, 81771699), Zhejiang Provincial Natural Science Foundation of China (LZ19H100001, LY18H100004, and LY15C080001), and Fundamental Research Funds for the Central Universities (2018QNA7008).

Author information

Authors and Affiliations

Authors

Contributions

DL, QT, and JZ performed the experiments and data analysis. DL and LL designed the experiments and wrote the manuscript. QW and YL helped with manuscript editing. YZ provided reagents and mice. YX and YS helped with infections of mice and related analysis.

Corresponding authors

Correspondence to Qingqing Wang or Lihua Lai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Tan, Q., Zhu, J. et al. MicroRNA-33/33* inhibit the activation of MAVS through AMPK in antiviral innate immunity. Cell Mol Immunol 18, 1450–1462 (2021). https://doi.org/10.1038/s41423-019-0326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0326-x

Keywords

This article is cited by

Search

Quick links