Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

REGγ controls Th17 cell differentiation and autoimmune inflammation by regulating dendritic cells

Abstract

Interleukin-17A (IL-17A)-producing helper T (Th17) cells are a subset of CD4+ T cells that play important pathological roles in autoimmune diseases. Although the intrinsic pathways of Th17 cell differentiation have been well described, how instructive signals derived from the innate immune system trigger the Th17 response and inflammation remains poorly understood. Here, we report that mice deficient in REGγ, a proteasome activator belonging to the 11S family, exhibit significantly deteriorated autoimmune neuroinflammation in an experimental autoimmune encephalomyelitis (EAE) model with augmented Th17 cell polarization in vivo. The results of the adoptive transfer of CD4+ T cells or dendritic cells (DCs) suggest that this phenotype is driven by DCs rather than T cells. Furthermore, REGγ deficiency promotes the expression of integrin αvβ8 on DCs, which activates the maturation of TGF-β1 to enhance Th17 cell development. Mechanistically, this process is mediated by the REGγ-proteasome-dependent degradation of IRF8, a transcription factor for αvβ8. Collectively, our findings delineate a previously unknown mechanism by which REGγ-mediated protein degradation in DCs controls the differentiation of Th17 cells and the onset of an experimental autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  Google Scholar 

  2. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  Google Scholar 

  3. Weaver, C. T., Hatton, R. D., Mangan, P. R. & Harrington, L. E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    CAS  Google Scholar 

  4. Van Kaer, L., Postoak, J. L., Wang, C., Yang, G. & Wu, L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol. Immunol. 16, 531–539 (2019).

    Google Scholar 

  5. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  Google Scholar 

  6. Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    CAS  Google Scholar 

  7. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  Google Scholar 

  8. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448, 484–487 (2007).

    CAS  Google Scholar 

  9. Mangan, P. R. et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231–234 (2006).

    CAS  Google Scholar 

  10. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    CAS  Google Scholar 

  11. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  Google Scholar 

  12. Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28, 29–39 (2008).

    CAS  Google Scholar 

  13. Yang, X. O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    CAS  Google Scholar 

  14. Chen, W. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  Google Scholar 

  15. Littman, D. R. & Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).

    CAS  Google Scholar 

  16. Korn, T. et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 105, 18460–18465 (2008).

    CAS  Google Scholar 

  17. Zhou, L. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453, 236–240 (2008).

    CAS  Google Scholar 

  18. Ganguly, D., Haak, S., Sisirak, V. & Reizis, B. The role of dendritic cells in autoimmunity. Nat. Rev. Immunol. 13, 566–577 (2013).

    CAS  Google Scholar 

  19. Heink, S. et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol. 18, 74–85 (2017).

    CAS  Google Scholar 

  20. Huang, G. et al. Signaling via the kinase p38alpha programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nat. Immunol. 13, 152–161 (2012).

    CAS  Google Scholar 

  21. Chen, X., Barton, L. F., Chi, Y., Clurman, B. E. & Roberts, J. M. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol. Cell 26, 843–852 (2007).

    CAS  Google Scholar 

  22. Li, X. et al. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol. Cell 26, 831–842 (2007).

    Google Scholar 

  23. Li, X. et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell 124, 381–392 (2006).

    CAS  Google Scholar 

  24. Moriishi, K. et al. Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc. Natl. Acad. Sci. USA 104, 1661–1666 (2007).

    CAS  Google Scholar 

  25. Sun, J. et al. The 11S proteasome subunit PSME3 is a positive feedforward regulator of NF-kappaB and important for host defense against bacterial pathogens. Cell Rep. 14, 737–749 (2016).

    Google Scholar 

  26. Xu, J. et al. The REGgamma-proteasome forms a regulatory circuit with IkappaBvarepsilon and NFkappaB in experimental colitis. Nat. Commun. 7, 10761 (2016).

    CAS  Google Scholar 

  27. Barton, L. F. et al. Immune defects in 28-kDa proteasome activator gamma-deficient mice. J. Immunol. 172, 3948–3954 (2004).

    CAS  Google Scholar 

  28. Uchimura, Y., Barton, L. F., Rada, C. & Neuberger, M. S. REG-gamma associates with and modulates the abundance of nuclear activation-induced deaminase. J. Exp. Med. 208, 2385–2391 (2011).

    CAS  Google Scholar 

  29. Gao, G. et al. Proteasome activator REGgamma enhances coxsackieviral infection by facilitating p53 degradation. J. Virol. 84, 11056–11066 (2010).

    CAS  Google Scholar 

  30. Bettelli, E., Oukka, M. & Kuchroo, V. K. T(H)-17cells in the circle of immunity and autoimmunity. Nat. Immunol. 8, 345–350 (2007).

    CAS  Google Scholar 

  31. Codarri, L. et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    CAS  Google Scholar 

  32. Croxford, A. L. et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity 43, 502–514 (2015).

    CAS  Google Scholar 

  33. Yogev, N. et al. Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity 37, 264–275 (2012).

    CAS  Google Scholar 

  34. Jung, S., Unutmaz, D., Wong, P., Sano, G., De los Santos, K. & Sparwasser, T. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    CAS  Google Scholar 

  35. Travis, M. A. & Sheppard, D. TGF-beta activation and function in immunity. Annu. Rev. Immunol. 32, 51–82 (2014).

    CAS  Google Scholar 

  36. Acharya, M. et al. alphav Integrin expression by DCs is required for Th17 cell differentiation and development of experimental autoimmune encephalomyelitis in mice. J. Clin. Invest. 120, 4445–4452 (2010).

    CAS  Google Scholar 

  37. Melton, A. C. et al. Expression of alphavbeta8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. J. Clin. Invest. 120, 4436–4444 (2010).

    CAS  Google Scholar 

  38. Yoshida, Y. et al. The transcription factor IRF8 activates integrin-mediated TGF-beta signaling and promotes neuroinflammation. Immunity 40, 187–198 (2014).

    CAS  Google Scholar 

  39. Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40, 594–607 (2014).

    CAS  Google Scholar 

  40. Kathania, M. et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-gammat ubiquitination. Nat. Immunol. 17, 997–1004 (2016).

    CAS  Google Scholar 

  41. Matsui-Hasumi, A. et al. E3 ubiquitin ligases SIAH1/2 regulate hypoxia-inducible factor-1 (HIF-1)-mediated Th17 cell differentiation. Int. Immunol. 29, 133–143 (2017).

    CAS  Google Scholar 

  42. Tanaka, T. et al. PDLIM2 inhibits T helper 17 cell development and granulomatous inflammation through degradation of STAT3. Sci. Signal. 4, ra85 (2011).

    Google Scholar 

  43. Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    CAS  Google Scholar 

  44. Ghoreschi, K. et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467, 967–971 (2010).

    CAS  Google Scholar 

  45. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    CAS  Google Scholar 

  46. Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544 (2017).

    CAS  Google Scholar 

  47. Yang, Y. et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J. Exp. Med. 206, 1549–1564 (2009).

    CAS  Google Scholar 

  48. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    CAS  Google Scholar 

  49. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    CAS  Google Scholar 

  50. El-Behi, M. et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 12, 568–575 (2011).

    CAS  Google Scholar 

  51. De Jager, P. L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 41, 776–782 (2009).

    Google Scholar 

  52. Xiong, H. et al. Ubiquitin-dependent degradation of interferon regulatory factor-8 mediated by Cbl down-regulates interleukin-12 expression. J. Biol. Chem. 280, 23531–23539 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Nan Shen for providing CD11c-DTR mice, Dr. Hongyan Wang for providing OT-II mice, and Dr. Stephen L. Nishimura for providing anti-αvβ8 neutralizing antibody. We also thank the ECNU Multifunctional Platform for Innovation (011) for maintaining and raising the mice. This work was supported by the National Program on Key Basic Research Project (2015CB901402), the National Natural Science Foundation of China (31670882, 31730017, 81672883), the Science and Technology Commission of Shanghai Municipality (16ZR1410000, 16QA1401500), and the Foundation of Guangdong Second Provincial General Hospital (2017-001).

Author information

Authors and Affiliations

Authors

Contributions

L.Z., X.L. and B.Z. designed the research. L.Z., L.Y. and Q.Z. performed most molecular, cell biology, immunological, and animal experiments. W.X., X.W., J.X., Q.L., Q.L., Y.X., H.Z., L.J., L.W., Weicang Wang, Weichao Wang, and T.S. helped with the experiments. L.F., B.Z., S.L. and L.L. provided scientific advice and valuable expertise. XT.L., B.Z. and L.Z. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Lei Li, Shuang Liu, Bianhong Zhang or Xiaotao Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Yao, L., Zhang, Q. et al. REGγ controls Th17 cell differentiation and autoimmune inflammation by regulating dendritic cells. Cell Mol Immunol 17, 1136–1147 (2020). https://doi.org/10.1038/s41423-019-0287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0287-0

Key words

This article is cited by

Search

Quick links