Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Progranulin deficiency confers resistance to autoimmune encephalomyelitis in mice

Abstract

Progranulin is a secreted neurotrophin that assists in the autophagolysosomal pathways that contribute to MHC-mediated antigen processing, pathogen removal, and autoimmunity. We showed that patients with multiple sclerosis (MS) have high levels of circulating progranulin and that its depletion in a mouse model by a monoclonal antibody aggravates MS-like experimental autoimmune encephalomyelitis (EAE). However, unexpectedly, progranulin-deficient mice (Grn−/−) were resistant to EAE, and this resistance was fully restored by wild-type bone marrow transplantation. FACS analyses revealed a loss of MHC-II-positive antigen-presenting cells in Grn−/− mice and a reduction in the number of CD8+ and CD4+ T-cells along with a strong increase in the number of scavenger receptor class B (CD36+) phagocytes, suggesting defects in antigen presentation along with a compensatory increase in phagocytosis. Indeed, bone marrow-derived dendritic cells from Grn−/− mice showed stronger uptake of antigens but failed to elicit antigen-specific T-cell proliferation. An increase in the number of CD36+ phagocytes was associated with increased local inflammation at the site of immunization, stronger stimulation-evoked morphological transformation of bone marrow-derived macrophages to phagocytes, an increase in the phagocytosis of E. coli particles and latex beads and defects in the clearance of the material. Hence, the outcomes in the EAE model reflect the dichotomy of progranulin-mediated immune silencing and autoimmune mechanisms of antigen recognition and presentation, and our results reveal a novel progranulin-dependent pathway in autoimmune encephalomyelitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    CAS  PubMed  Google Scholar 

  2. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    CAS  PubMed  Google Scholar 

  3. Gotzl, J. K. et al. Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol. 127, 845–860 (2014).

    PubMed  Google Scholar 

  4. Mackenzie, I. R. et al. The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129, 3081–3090 (2006).

    PubMed  Google Scholar 

  5. Schafer, M. K. E. & Tegeder, I. NG2/CSPG4 and progranulin in the posttraumatic glial scar. Matrix Biol. 6869, 571–588 (2018).

    PubMed  Google Scholar 

  6. Naphade, S. B. et al. Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol. 119, 123–133 (2010).

    CAS  PubMed  Google Scholar 

  7. Tanaka, Y., Matsuwaki, T., Yamanouchi, K. & Nishihara, M. Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice. Neuroscience 250, 8–19 (2013).

    CAS  PubMed  Google Scholar 

  8. Yin, F. et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J. Exp. Med 207, 117–128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmed, Z. et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am. J. Pathol. 177, 311–324 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Filiano, A. J. et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J. Neurosci. 33, 5352–5361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Altmann, C. et al. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling. Mol. Neurodegener. 11, 69 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Neill, T. et al. EphA2 is a functional receptor for the growth factor progranulin. J. Cell Biol. 215, 687–703 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Altmann, C. et al. Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy. Neurobiol. Dis. 96, 294–311 (2016).

    CAS  PubMed  Google Scholar 

  16. Tanaka, Y., Chambers, J. K., Matsuwaki, T., Yamanouchi, K. & Nishihara, M. Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol. Commun. 2, 78 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Chang, M. C. et al. Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J. Exp. Med 214, 2611–2628 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jian, J. et al. Association Between Progranulin and Gaucher Disease. EBioMedicine 11, 127–137 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. He, Z., Ong, C. H., Halper, J. & Bateman, A. Progranulin is a mediator of the wound response. Nat. Med. 9, 225–229 (2003).

    CAS  PubMed  Google Scholar 

  20. Zhou, M. et al. Progranulin protects against renal ischemia/reperfusion injury in mice. Kidney Int 87, 918–929 (2015).

    CAS  PubMed  Google Scholar 

  21. He, Z. & Bateman, A. Progranulin gene expression regulates epithelial cell growth and promotes tumor growth in vivo. Cancer Res. 59, 3222–3229 (1999).

    CAS  PubMed  Google Scholar 

  22. Fu, W. et al. Foxo4- and Stat3-dependent IL-10 production by progranulin in regulatory T cells restrains inflammatory arthritis. FASEB J. 31, 1354–1367 (2017).

    CAS  PubMed  Google Scholar 

  23. Wei, F., Zhang, Y., Zhao, W., Yu, X. & Liu, C. J. Progranulin facilitates conversion and function of regulatory T cells under inflammatory conditions. PLoS One 9, e112110 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Suh, H. S., Lo, Y., Choi, N., Letendre, S. & Lee, S. C. Evidence of the innate antiviral and neuroprotective properties of progranulin. PLoS One 9, e98184 (2014). eCollection 2014.

    PubMed  PubMed Central  Google Scholar 

  25. Park, B. et al. Granulin is a soluble cofactor for toll-like receptor 9 signaling. Immunity 34, 505–513 (2011).

    PubMed  Google Scholar 

  26. Holler, C. J., Taylor, G., Deng, Q. & Kukar, T. Intracellular proteolysis of progranulin generates stable, lysosomal granulins that are haploinsufficient in patients with frontotemporal dementia caused by GRN mutations. eNeuro 4, eN-NWR-0100-17 (2017). eCollection Jul–Aug.

    Google Scholar 

  27. Zhou, X. et al. Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J. Cell Biol. 210, 991–1002 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujita, E. et al. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum. Mol. Genet 16, 618–629 (2007).

    CAS  PubMed  Google Scholar 

  29. Beel, S. et al. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum. Mol. Genet 26, 2850–2863 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, D. et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22, 571–581 (2005).

    CAS  PubMed  Google Scholar 

  31. Kondylis, V. et al. Endosome-mediated autophagy: an unconventional MIIC-driven autophagic pathway operational in dendritic cells. Autophagy 9, 861–880 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmid, D., Pypaert, M. & Munz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007).

    CAS  PubMed  Google Scholar 

  33. Bhattacharya, A., Parillon, X., Zeng, S., Han, S. & Eissa, N. T. Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis. J. Biol. Chem. 289, 26525–26532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Weindel, C. G. et al. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 11, 1010–1024 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Finch, N. et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132, 583–591 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Huang, K. et al. Progranulin is preferentially expressed in patients with psoriasis vulgaris and protects mice from psoriasis-like skin inflammation. Immunology 145, 279–287 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanaka, A. et al. Serum progranulin levels are elevated in patients with systemic lupus erythematosus, reflecting disease activity. Arthritis Res Ther. 14, R244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lotsch, J. et al. Machine-learned data structures of lipid marker serum concentrations in multiple sclerosis patients differ from those in healthy subjects. Int J. Mol. Sci. 18, E1217 (2017).

    PubMed  Google Scholar 

  39. Schiffmann, S. et al. Ceramide synthase 6 plays a critical role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 188, 5723–5733 (2012).

    CAS  PubMed  Google Scholar 

  40. Pawlitzki, M. et al. CSF-progranulin and neurofilament light chain levels in patients with radiologically isolated syndrome-sign of inflammation. Front Neurol. 9, 1075 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Kimura, A. et al. Increased cerebrospinal fluid progranulin correlates with interleukin-6 in the acute phase of neuromyelitis optica spectrum disorder. J. Neuroimmunol. 305, 175–181 (2017).

    CAS  PubMed  Google Scholar 

  42. Hardt, S. et al. Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain. Biochim Biophys. Acta 1863, 2727–2745 (2017).

    CAS  Google Scholar 

  43. Kao, A. W. et al. A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proc. Natl Acad. Sci. USA 108, 4441–4446 (2011).

    CAS  PubMed  Google Scholar 

  44. Philips, J. A., Rubin, E. J. & Perrimon, N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309, 1251–1253 (2005).

    CAS  PubMed  Google Scholar 

  45. Hawkes, M. et al. CD36 deficiency attenuates experimental mycobacterial infection. BMC Infect. Dis. 10, 299 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Bieghs, V. et al. Internalization of modified lipids by CD36 and SR-A leads to hepatic inflammation and lysosomal cholesterol storage in Kupffer cells. PLoS ONE 7, e34378 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sanjurjo, L. et al. The human CD5L/AIM-CD36 axis: a novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy 11, 487–502 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Tanaka, Y. et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum. Mol. Genet 26, 969–988 (2017).

    CAS  PubMed  Google Scholar 

  49. Tegeder, I. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries. Data Brief. 9, 1060–1062 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Suarez-Calvet, M. et al. CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol. Med 10, e9712 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Li, H. et al. Circulating PGRN is significantly associated with systemic insulin sensitivity and autophagic activity in metabolic syndrome. Endocrinology 155, 3493–3507 (2014).

    PubMed  Google Scholar 

  52. Martens, L. H. et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J. Clin. Investig. 122, 3955–3959 (2012).

    CAS  PubMed  Google Scholar 

  53. Miller, Z. A. et al. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J. Neurol. Neurosurg. Psychiatry 84, 956–962 (2013).

    PubMed  Google Scholar 

  54. Thurner, L. et al. The molecular basis for development of proinflammatory autoantibodies to progranulin. J. Autoimmun. 61, 17–28 (2015).

    CAS  PubMed  Google Scholar 

  55. Menzel, L. et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 65, 278–292 (2017).

    PubMed  Google Scholar 

  56. Keller, C. W. et al. ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4(+) T cell pathogenicity during CNS inflammation. Proc. Natl Acad. Sci. USA 114, E11228–E11237 (2017).

    CAS  PubMed  Google Scholar 

  57. Stoeckle, C. et al. Cathepsin S dominates autoantigen processing in human thymic dendritic cells. J. Autoimmun. 38, 332–343 (2012).

    CAS  PubMed  Google Scholar 

  58. Zhou, S. et al. Autophagy is involved in the pathogenesis of experimental autoimmune neuritis in rats. Neuroreport 27, 337–344 (2016).

    CAS  PubMed  Google Scholar 

  59. Seto, S., Tsujimura, K., Horii, T. & Koide, Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS One 8, e86017 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Egashira, Y. et al. The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment. J. Neuroinflamm. 10, 105 (2013).

    Google Scholar 

  61. Chen, X. et al. Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells. J. Neurosci. 33, 9202–9213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Reuter, E. et al. Role of sortilin in models of autoimmune neuroinflammation. J. Immunol. 195, 5762–5769 (2015).

    CAS  PubMed  Google Scholar 

  63. Gass, J. et al. Progranulin regulates neuronal outgrowth independent of Sortilin. Mol. Neurodegener. 7, 33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hu, F. et al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68, 654–667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, Y. et al. Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease. J. Mol. Med. 96, 1359–1373 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai, X. et al. Expression and polymorphisms of lysosome-associated protein transmembrane 5 (LAPTM5) in patients with systemic lupus erythematosus in a Chinese population. Biochem. Genet. 53, 200–210 (2015).

    CAS  PubMed  Google Scholar 

  67. Vercellino, M. et al. Progranulin expression in brain tissue and cerebrospinal fluid levels in multiple sclerosis. Mult. Scler. 17, 1194–1201 (2011).

    CAS  PubMed  Google Scholar 

  68. Schmitz, K. et al. Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis. Acta Neuropathol. Commun. 5, 42 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by the Deutsche Forschungsgemeinschaft (CRC1080, A3 to IT and MS; CRC1039 to IT) and the research funding program “Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz” (LOEWE) of the State of Hessen, Research Center for Translational Medicine and Pharmacology, TMP. We thank Sabine Wicker for collecting blood samples from human controls and Dominique Thomas for the analysis of lipid levels in serum samples.

Author information

Authors and Affiliations

Authors

Contributions

KS, VV, and AWS performed the experiments and analyzed the data. KS performed all of the in vivo and ex vivo EAE experiments. VV assessed colocalization in the cell lines. RB collected human samples and clinical data. MS contributed colocalization expertize. IT initiated the study, analyzed clinical, FACS and image data, made the figures, and created and revised the manuscript. All authors contributed to and approved the final version of the manuscript.

Corresponding author

Correspondence to Irmgard Tegeder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, K., Wilken-Schmitz, A., Vasic, V. et al. Progranulin deficiency confers resistance to autoimmune encephalomyelitis in mice. Cell Mol Immunol 17, 1077–1091 (2020). https://doi.org/10.1038/s41423-019-0274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0274-5

Keywords

This article is cited by

Search

Quick links