Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZBP1 mediates interferon-induced necroptosis

Abstract

Interferons (IFNs) play an important role in immunomodulatory and antiviral functions. IFN-induced necroptosis has been reported in cells deficient in receptor-interacting protein kinase 1 (RIPK1), Fas-associated protein with death domain (FADD), or caspase-8, but the mechanism is largely unknown. Here, we report that the DNA-dependent activator of IFN regulatory factors (ZBP1, also known as DAI) is required for both type I (β) and type II (γ) IFN-induced necroptosis. We show that L929 fibroblast cells became susceptible to IFN-induced necroptosis when RIPK1, FADD, or Caspase-8 was genetically deleted, confirming the antinecroptotic role of these proteins in IFN signaling. We found that the pronecroptotic signal from IFN stimulation depends on new protein synthesis and identified ZBP1, an IFN-stimulated gene (ISG) product, as the de novo synthesized protein that triggers necroptosis in IFN-stimulated cells. The N-terminal domain (ND) of ZBP1 is important for ZBP1–ZBP1 homointeraction, and its RHIM domain in the C-terminal region interacts with RIPK3 to initiate RIPK3-dependent necroptosis. The antinecroptotic function of RIPK1, FADD, and caspase-8 in IFN-treated cells is most likely executed by caspase-8-mediated cleavage of RIPK3, since the inhibitory effect on necroptosis was eliminated when the caspase-8 cleavage site in RIPK3 was mutated. ZBP1-mediated necroptosis in IFN-treated cells is likely physiologically relevant, as ZBP1 KO mice were significantly protected against acute systemic inflammatory response syndrome (SIRS) induced by TNF + IFN-γ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vilcek, J. Fifty years of interferon research: aiming at a moving target. Immunity 25, 343–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Honda, K., Takaoka, A. & Taniguchi, T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Pestka, S., Krause, C. D. & Walter, M. R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 202, 8–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. van Boxel-Dezaire, A. H., Rani, M. R. & Stark, G. R. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 25, 361–72 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. Piehler, J., Thomas, C., Garcia, K. C. & Schreiber, G. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation. Immunol. Rev. 250, 317–34 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Marcello, T. et al. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131, 1887–98 (2006).

    Article  PubMed  Google Scholar 

  7. Schindler, C., Levy, D. E. & Decker, T. JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem. 282, 20059–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Bach, E. A., Aguet, M. & Schreiber, R. D. The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 563–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Dussurget, O., Bierne, H. & Cossart, P. The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons. Front. Cell. Infect. Microbiol. 4, 50 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Thapa, R. J. et al. NF-kappaB protects cells from gamma interferon-induced RIP1-dependent necroptosis. Mol. Cell. Biol. 31, 2934–46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thapa, R. J. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl Acad. Sci. USA 110, E3109–E18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McComb, S. et al. Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc. Natl Acad. Sci. USA 111, E3206–E13 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu, Y. et al. Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene 240, 157–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–U14 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290–7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sridharan, H. et al. Murine cytomegalovirus IE3-dependent transcription is required for DAI/ZBP1-mediated necroptosis. EMBO Rep. 18, 1429–41 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maelfait, J. et al. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J. 36, 2529–43 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thapa, R. J. et al. DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe 20, 674–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koehler, H. et al. Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3. Proc. Natl Acad. Sci. USA 114, 11506–11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, D. et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc. Natl Acad. Sci. USA 115, 3930–5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, 2 (2016).

    Article  Google Scholar 

  24. Newton, K. et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540, 129-+ (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, J. et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540, 124–8 (2016).

    Article  CAS  Google Scholar 

  26. Feng, S. et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell. Signal. 19, 2056–67 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13, 2514–26 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, L., Du, F. & Wang, X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–23 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–6 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, W. et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J. Biol. Chem. 288, 16247–61 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, Z. et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17, 229–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290–7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rebsamen, M. et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappa B. EMBO Rep. 10, 916–22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427–34 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, X. N. et al. Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ. 21, 1709–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8, 297–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Ting, A. T., Pimentel-Muinos, F. X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J. 15, 6189–96 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duprez, L. et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Tracey, K. J. et al. Shock and tissue injury induced by recombinant human cachectin. Science 234, 470–4 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Huys, L. et al. Type I interferon drives tumor necrosis factor-induced lethal shock. J. Exp. Med. 206, 1873–82 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vanlangenakker, N., Vanden Berghe, T. & Vandenabeele, P. Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 19, 75–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Polykratis, A. et al. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–4 (2014).

    Article  CAS  Google Scholar 

  52. Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Ofengeim, D. et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 10, 1836–49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–47 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, W. Z. et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat. Cell Biol. 17, 434–44 (2015).

    Article  CAS  Google Scholar 

  56. Chen, W. Z. et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J. Biol. Chem. 288, 16247–61 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81788101), the National Basic Research Program of China (973 Program 2015CB553800), the National Natural Science Foundation of China (31420103910, 81630042, 31500737, and 31601122), the China Postdoctoral Science Foundation (2018T110638, 2017 M620267, and 2015T80680), the 111 Project (B12001), and the National Science Foundation of China for Fostering Talents in Basic Research (J1310027).

Author information

Authors and Affiliations

Authors

Contributions

D. Y., Y. L., and J. H. conceived the study and wrote the manuscript; D. Y., S. Z., Y. D., and Q. Z. performed experiments; Q. S., T. A., and S. W. provided technical assistance.

Corresponding author

Correspondence to Jiahuai Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Liang, Y., Zhao, S. et al. ZBP1 mediates interferon-induced necroptosis. Cell Mol Immunol 17, 356–368 (2020). https://doi.org/10.1038/s41423-019-0237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0237-x

Keywords

This article is cited by

Search

Quick links