Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Primed macrophages directly and specifically reject allografts

Abstract

Monocytes and macrophages have long been associated with acute and chronic allograft rejection; this is mediated by their abilities to promote inflammation, kill target cells via antibody-dependent cytotoxicity and modulate adaptive immunity. Our present study showed that allogeneic antigen-primed macrophages acutely rejected skin grafts with specificity after adoptive transfer into MHC-matched immunodeficient mice. The ability of primed macrophages to reject allografts essentially requires the help of CD4+ T cells and does not require the help of CD8+ T cells. Moreover, the primed, perforin-deficient macrophages rejected the skin grafts in a significantly delayed pattern compared with WT macrophages, indicating that the perforin pathway of the primed macrophages is likely involved in the rejection process. Thus, primed macrophages are endowed with adaptive immunity-like features, such as specificity, with the help of CD4+ T cells during the immune response to allografts. The present study challenges our traditional views of macrophage functions and highlights the biological functions of macrophages beyond innate immunity in mammals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jones J. D., Vance R. E., Dangl J. L. Intracellular innate immune surveillance devices in plants and animals. Science. 354, aaf6395 (2016).

  2. Huang, S. et al. Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166, 102–114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 1127–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Min-Oo, G., Bezman, N. A., Madera, S., Sun, J. C. & Lanier, L. L. Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. J. Exp. Med. 211, 1289–1296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reeves, R. K. et al. Antigen-specific NK cell memory in rhesus macaques. Nat. Immunol. 16, 927–932 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nabekura, T. & Lanier, L. L. Tracking the fate of antigen-specific versus cytokine-activated natural killer cells after cytomegalovirus infection. J. Exp. Med. 213, 2745–2758 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nayak D. K., et al. Zbtb7a induction in alveolar macrophages is implicated in anti-HLA-mediated lung allograft rejection. Sci Transl Med. 9, eaal1243 (2017).

  9. Lakkis, F. G. & Li, X. C. Innate allorecognition by monocytic cells and its role in graft rejection. Am. J. Transplant. 18, 289–292 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, X., Tian, W., Sung, Y. K., Qian, J. & Nicolls, M. R. Macrophages in solid organ transplantation. Vasc. Cell 6, 5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Salehi, S. & Reed, E. F. The divergent roles of macrophages in solid organ transplantation. Curr. Opin. Organ Transplant. 20, 446–453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hou, Y. et al. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis. Protein Cell 9, 1027–1038 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao, Y. et al. mTOR masters monocyte development in bone marrow by decreasing the inhibition of STAT5 on IRF8. Blood 131, 1587–1599 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, F. et al. TNFalpha-induced M-MDSCs promote transplant immune tolerance via nitric oxide. J. Mol. Med. 94, 911–920 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y. et al. Characterization and biological significance of IL-23-induced neutrophil polarization. Cell. Mol. Immunol. 15, 518–530 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Conde, P. et al. DC-SIGN(+) macrophages control the induction of transplantation tolerance. Immunity 42, 1143–1158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng, C. et al. Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis. 7, e2167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, F. et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15, 938–946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, Y., Zou, W., Du, J. & Zhao, Y. The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation. J. Cell. Physiol. 233, 6425–6439 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Sieweke, M. H. & Allen, J. E. Beyond stem cells: self-renewal of differentiated macrophages. Science 342, 1242974 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jackson-Jones, L. H. et al. IL-33 delivery induces serous cavity macrophage proliferation independent of interleukin-4 receptor alpha. Eur. J. Immunol. 46, 2311–2321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8(+) T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siracusa, F. et al. Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow. Proc. Natl Acad. Sci. USA 115, 1334–1339 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baba, T. et al. CD4+/CD8+macrophages infiltrating at inflammatory sites: a population of monocytes/macrophages with a cytotoxic phenotype. Blood 107, 2004–2012 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Baba, T. et al. Rat CD4+CD8+macrophages kill tumor cells through an NKG2D- and granzyme/perforin-dependent mechanism. J. Immunol. 180, 2999–3006 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Steiger, S., Kuhn, S., Ronchese, F. & Harper, J. L. Monosodium urate crystals induce upregulation of NK1.1-dependent killing by macrophages and support tumor-resident NK1.1+monocyte/macrophage populations in antitumor therapy. J. Immunol. 195, 5495–5502 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dotiwala, F. et al. Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites. Nat. Med. 22, 210–216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia, Y. et al. IL-2 augments the therapeutic efficacy of adoptively transferred B cells which directly kill tumor cells via the CXCR4/CXCL12 and perforin pathways. Oncotarget 7, 60461–60474 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Sarkar, S. et al. Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS One 8, e64835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Halloran, P. F. et al. Review: the transcripts associated with organ allograft rejection. Am. J. Transplant. 18, 785–795 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, W., Xiao, X., Demirci, G., Madsen, J. & Li, X. C. Innate NK cells and macrophages recognize and reject allogeneic nonself in vivo via different mechanisms. J. Immunol. 188, 2703–2711 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Leung, C. S., Li, J., Xu, F., Wong, A. S. L. & Lui, K. O. Ectopic expression of recipient CD47 inhibits mouse macrophage-mediated immune rejection against human stem cell transplants. FASEB J. 33, 484–493 (2018).

    Article  PubMed  Google Scholar 

  37. Yi, S. et al. T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts. J. Immunol. 170, 2750–2758 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. van den Boorn, J. G. et al. Inflammasome-dependent induction of adaptive NK cell memory. Immunity 44, 1406–1421 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Hammer, Q., Ruckert, T. & Romagnani, C. Natural killer cell specificity for viral infections. Nat. Immunol. 19, 800–808 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Marino, J., Paster, J. & Benichou, G. Allorecognition by T lymphocytes and allograft rejection. Front. Immunol. 7, 582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karahan, G. E., Claas, F. H. & Heidt, S. B. Cell immunity in solid organ transplantation. Front. Immunol. 7, 686 (2016).

    PubMed  Google Scholar 

  42. Zhao X., et al. Delayed allogeneic skin graft rejection in CD26-deficient mice. Cell Mol. Immunol. 2018. in press

  43. Benichou, G. et al. Immune recognition and rejection of allogeneic skin grafts. Immunotherapy 3, 757–770 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Ngo Nyekel, F. et al. Mast cell degranulation exacerbates skin rejection by enhancing neutrophil recruitment. Front. Immunol. 9, 2690 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Piccolo, V. et al. Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat. Immunol. 18, 530–540 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beland, S., Desy, O., Vallin, P., Basoni, C. & De Serres, S. A. Innate immunity in solid organ transplantation: an update and therapeutic opportunities. Expert Rev. Clin. Immunol. 11, 377–389 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, Y. et al. Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model. Am. J. Transplant. 18, 604–616 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Li, J. et al. ADAR1 attenuates allogeneic graft rejection by suppressing miR-21 biogenesis in macrophages and promoting M2 polarization. FASEB J. 32, 5162–5173 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Amores-Iniesta, J. et al. Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Rep. 21, 3414–3426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Riquelme, P. et al. TIGIT(+) iTregs elicited by human regulatory macrophages control T cell immunity. Nat. Commun. 9, 2858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kawakami, T. et al. Cytotoxicity of natural killer cells activated through NKG2D contributes to the development of bronchiolitis obliterans in a murine heterotopic tracheal transplant model. Am. J. Transplant. 17, 2338–2349 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Baas, M. et al. TGFbeta-dependent expression of PD-1 and PD-L1 controls CD8(+) T cell anergy in transplant tolerance. eLife 5, e08133 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Zhanfeng Liang for his kind editing of the manuscript, Mrs. Qing Meng for her expert technical assistance, Mrs. Ling Li for her excellent laboratory management, and Mr. Baisheng Ren for his outstanding animal husbandry. This work was supported by grants from the National Key R&D Program of China (2017YFA0105002 and 2017YFA0104402 to Y.Z.), the National Science and Technology Major Project (2017ZX10201101), the National Natural Science Foundation for General and Key Programs (C81530049 and U1738111 to Y.Z.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030301 and XDA04020202-19 to Y.Z.), and the China Manned Space Flight Technology Project (TZ-1, Y.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Z.C. designed and performed the adoptive transfer studies and analyzed the data; C.S. designed and performed the experiments with the cells and mice and analyzed the data; L.S. performed the real-time PCR assays and the molecular studies and analyzed the data; C.F. performed the immunostaining assays and flow cytometry assays; F.Y. designed and performed the ex vivo studies and analyzed the data; Y.X. performed histology assays; and Y.Z. provided overall supervision, designed the experiments, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Yong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Z., Sun, C., Sun, L. et al. Primed macrophages directly and specifically reject allografts. Cell Mol Immunol 17, 237–246 (2020). https://doi.org/10.1038/s41423-019-0226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0226-0

Key words

Search

Quick links