Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NK cell recognition of hematopoietic cells by SLAM-SAP families

Abstract

The signaling lymphocyte activation molecule (SLAM) family of receptors (SFRs) are ubiquitously expressed on immune cells, and they regulate multiple immune events by recruiting SH2 (Src homology 2) domain-containing SAP family adapters, including SAP and its homologs, Ewing’s sarcoma-associated transcript 2 (EAT-2) and EAT-2 related transducer (ERT). In human patients with X-linked lymphoproliferative (XLP) disease, which is caused by SAP mutations, SFRs alternatively bind other inhibitory SH2 domain-containing molecules to suppress immune cell activation and development. NK cells express multiple SFRs and all SAP family adapters. In recent decades, SFRs have been found to be critical for enhancing NK cell activation in response to abnormal hematopoietic cells in SAP-family-intact NK cells; however, SFRs might suppress NK cell activation in SAP-family-deficient mice or patients with XLP1. In this paper, we review how these two distinct SFR signaling pathways orchestrate NK cell activation and inhibition and highlight the importance of SFR regulation of NK cell biology and their physiological status and pathological relevance in patients with XLP1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Yokoyama, W. M. & Plougastel, B. F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    CAS  PubMed  Google Scholar 

  2. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  Google Scholar 

  3. Orr, M. T. & Lanier, L. L. Natural killer cell education and tolerance. Cell 142, 847–856 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Elliott, J. M. & Yokoyama, W. M. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 32, 364–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    CAS  PubMed  Google Scholar 

  6. Hilton, H. G. & Parham, P. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 69, 567–579 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ljunggren, H. G. & Karre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    CAS  PubMed  Google Scholar 

  8. Long, E. O., Kim, H. S., Liu, D., Peterson, M. E. & Rajagopalan, S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu. Rev. Immunol. 31, 227–258 (2013).

    CAS  PubMed  Google Scholar 

  9. Colucci, F., Di Santo, J. P. & Leibson, P. J. Natural killer cell activation in mice and men: different triggers for similar weapons? Nat. Immunol. 3, 807–813 (2002).

    CAS  PubMed  Google Scholar 

  10. Rosen, D. B. et al. A Structural basis for the association of DAP12 with mouse, but not human, NKG2D. J. Immunol. 173, 2470–2478 (2004).

    CAS  PubMed  Google Scholar 

  11. Dong, Z. & Veillette, A. How do SAP family deficiencies compromise immunity? Trends Immunol. 31, 295–302 (2010).

    CAS  PubMed  Google Scholar 

  12. Cannons, J. L., Tangye, S. G. & Schwartzberg, P. L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol. 29, 665–705 (2011).

    CAS  PubMed  Google Scholar 

  13. Veillette, A. NK cell regulation by SLAM family receptors and SAP-related adapters. Immunol. Rev. 214, 22–34 (2006).

    CAS  PubMed  Google Scholar 

  14. Dong, Z. et al. The adaptor SAP controls NK cell activation by regulating the enzymes Vav-1 and SHIP-1 and by enhancing conjugates with target cells. Immunity 36, 974–985 (2012).

    CAS  PubMed  Google Scholar 

  15. Tangye, S. G. et al. Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J. Immunol. 162, 6981–6985 (1999).

    CAS  PubMed  Google Scholar 

  16. Eissmann, P. et al. Molecular basis for positive and negative signaling by the natural killer cell receptor 2B4 (CD244). Blood 105, 4722–4729 (2005).

    CAS  PubMed  Google Scholar 

  17. Parolini, S. et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J. Exp. Med. 192, 337–346 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Coffey, A. J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat. Genet. 20, 129–135 (1998).

    CAS  PubMed  Google Scholar 

  19. Nichols, K. E. et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc. Natl Acad. Sci. USA 95, 13765–13770 (1998).

    CAS  PubMed  Google Scholar 

  20. Harada, S. et al. Immune deficiency in the X-linked lymphoproliferative syndrome. I. Epstein-Barr virus-specific defects. J. Immunol. 129, 2532–2535 (1982).

    CAS  PubMed  Google Scholar 

  21. Purtilo, D. T., Cassel, C. K., Yang, J. P. & Harper, R. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet 1, 935–940 (1975).

    CAS  PubMed  Google Scholar 

  22. Bar, R. S. et al. Fatal infectious mononucleosis in a family. N. Engl. J. Med. 290, 363–367 (1974).

    CAS  PubMed  Google Scholar 

  23. Provisor, A. J., Iacuone, J. J., Chilcote, R. R., Neiburger, R. G. & Crussi, F. G. Acquired agammaglobulinemia after a life-threatening illness with clinical and laboratory features of infectious mononucleosis in three related male children. N. Engl. J. Med. 293, 62–65 (1975).

    CAS  PubMed  Google Scholar 

  24. Nichols, K. E. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 11, 340–345 (2005).

    CAS  PubMed  Google Scholar 

  25. Pasquier, B. et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695–701 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma, C. S. et al. Selective generation of functional somatically mutated IgM + CD27 + , but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. J. Clin. Invest. 116, 322–333 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Crotty, S., Kersh, E. N., Cannons, J., Schwartzberg, P. L. & Ahmed, R. SAP is required for generating long-term humoral immunity. Nature 421, 282–287 (2003).

    CAS  PubMed  Google Scholar 

  28. Wu, N. et al. A hematopoietic cell-driven mechanism involving SLAMF6 receptor, SAP adaptors and SHP-1 phosphatase regulates NK cell education. Nat. Immunol. 17, 387–396 (2016).

    CAS  PubMed  Google Scholar 

  29. Chen, S. et al. The self-specific activation receptor SLAM family is critical for NK cell education. Immunity 45, 292–304 (2016).

    CAS  PubMed  Google Scholar 

  30. Perez-Quintero, L. A. et al. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cgamma, Ca++, and Erk, leading to granule polarization. J. Exp. Med. 211, 727–742 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Benoit, L., Wang, X., Pabst, H. F., Dutz, J. & Tan, R. Defective NK cell activation in X-linked lymphoproliferative disease. J. Immunol. 165, 3549–3553 (2000).

    CAS  PubMed  Google Scholar 

  32. Bottino, C. et al. NTB-A [correction of GNTB-A], a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein-Barr virus-infected B cells in X-linked lymphoproliferative disease. J. Exp. Med. 194, 235–246 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakajima, H. et al. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur. J. Immunol. 30, 3309–3318 (2000).

    CAS  PubMed  Google Scholar 

  34. Dong, Z. et al. Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nat. Immunol. 10, 973–980 (2009).

    CAS  PubMed  Google Scholar 

  35. Veillette, A. Immune regulation by SLAM family receptors and SAP-related adaptors. Nat. Rev. Immunol. 6, 56–66 (2006).

    CAS  PubMed  Google Scholar 

  36. Kingsmore, S. F., Souryal, C. A., Watson, M. L., Patel, D. D. & Seldin, M. F. Physical and genetic linkage of the genes encoding Ly-9 and CD48 on mouse and human chromosomes 1. Immunogenetics 42, 59–62 (1995).

    CAS  PubMed  Google Scholar 

  37. Velikovsky, C. A. et al. Structure of natural killer receptor 2B4 bound to CD48 reveals basis for heterophilic recognition in signaling lymphocyte activation molecule family. Immunity 27, 572–584 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ames, J. B., Vyas, V., Lusin, J. D. & Mariuzza, R. NMR structure of the natural killer cell receptor 2B4 (CD244): implications for ligand recognition. Biochemistry 44, 6416–6423 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao, E. et al. NTB-A receptor crystal structure: insights into homophilic interactions in the signaling lymphocytic activation molecule receptor family. Immunity 25, 559–570 (2006).

    CAS  PubMed  Google Scholar 

  40. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    CAS  PubMed  Google Scholar 

  41. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    CAS  PubMed  Google Scholar 

  42. Morra, M. et al. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. EMBO J. 20, 5840–5852 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Roncagalli, R. et al. Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor. Nat. Immunol. 6, 1002–1010 (2005).

    CAS  PubMed  Google Scholar 

  44. Cruz-Munoz, M. E., Dong, Z., Shi, X., Zhang, S. & Veillette, A. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat. Immunol. 10, 297–305 (2009).

    CAS  PubMed  Google Scholar 

  45. Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell. Stem. Cell. 13, 102–116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  PubMed  Google Scholar 

  47. Tai, Y. T. et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112, 1329–1337 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Malaer, J. D. & Mathew, P. A. CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. Am. J. Cancer Res. 7, 1637–1641 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tai, Y. T. et al. CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells. Blood 113, 4309–4318 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo, H. et al. Deletion of Slam locus in mice reveals inhibitory role of SLAM family in NK cell responses regulated by cytokines and LFA-1. J. Exp. Med. 213, 2187–2207 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Lee, K. M. et al. 2B4 acts as a non-major histocompatibility complex binding inhibitory receptor on mouse natural killer cells. J. Exp. Med. 199, 1245–1254 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sivori, S. et al. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc. Natl Acad. Sci. USA 99, 4526–4531 (2002).

    CAS  PubMed  Google Scholar 

  53. Wall, S. A., Devine, S. & Vasu, S. The who, how and why: allogeneic transplant for acute myeloid leukemia in patients older than 60 years. Blood Rev. 31, 362–369 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006).

    CAS  PubMed  Google Scholar 

  55. Giralt, S. & Bishop, M. R. Principles and overview of allogeneic hematopoietic stem cell transplantation. Cancer Treat. Res. 144, 1–21 (2009).

    CAS  PubMed  Google Scholar 

  56. Leung, W. Infusions of allogeneic natural killer cells as cancer therapy. Clin. Cancer Res. 20, 3390–3400 (2014).

    CAS  PubMed  Google Scholar 

  57. Bachanova, V. & Miller, J. S. NK cells in therapy of cancer. Crit. Rev. Oncog. 19, 133–141 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Mahr B. et al. Hybrid resistance to parental bone marrow grafts in nonlethally irradiated mice. Am J Transplant 19, 591–596 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Cudkowicz, G. & Bennett, M. Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J. Exp. Med. 134, 1513–1528 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cudkowicz, G. & Stimpfling, J. H. Deficient growth of C57bl marrow cells transplanted in F1 hybrid mice. Association with the histocompatibility-2 locus. Immunology 7, 291–306 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bix, M. et al. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349, 329–331 (1991).

    CAS  PubMed  Google Scholar 

  62. Raulet, D. H. Bone marrow cell rejection, MHC, NK cells, and missing self recognition: ain’t that peculiar (with apologies to marvin gaye). J. Immunol. 195, 2923–2925 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ogasawara, K., Benjamin, J., Takaki, R., Phillips, J. H. & Lanier, L. L. Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. Nat. Immunol. 6, 938–945 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hamby, K. et al. NK cells rapidly reject allogeneic bone marrow in the spleen through a perforin- and Ly49D-dependent, but NKG2D-independent mechanism. Am. J. Transplant. 7, 1884–1896 (2007).

    CAS  PubMed  Google Scholar 

  65. Beilke, J. N., Benjamin, J. & Lanier, L. L. The requirement for NKG2D in NK cell-mediated rejection of parental bone marrow grafts is determined by MHC class I expressed by the graft recipient. Blood 116, 5208–5216 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. George, T. C., Ortaldo, J. R., Lemieux, S., Kumar, V. & Bennett, M. Tolerance and alloreactivity of the Ly49D subset of murine NK cells. J. Immunol. 163, 1859–1867 (1999).

    CAS  PubMed  Google Scholar 

  67. Dupre, L. et al. SAP controls the cytolytic activity of CD8 + T cells against EBV-infected cells. Blood 105, 4383–4389 (2005).

    CAS  PubMed  Google Scholar 

  68. Sharifi, R. et al. SAP mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease. Blood 103, 3821–3827 (2004).

    CAS  PubMed  Google Scholar 

  69. Bloch-Queyrat, C. et al. Regulation of natural cytotoxicity by the adaptor SAP and the Src-related kinase Fyn. J. Exp. Med. 202, 181–192 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernandez, N. C. et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liao, N. S., Bix, M., Zijlstra, M., Jaenisch, R. & Raulet, D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253, 199–202 (1991).

    CAS  PubMed  Google Scholar 

  72. Tripathy, S. K. et al. Continuous engagement of a self-specific activation receptor induces NK cell tolerance. J. Exp. Med. 205, 1829–1841 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fauriat, C., Ivarsson, M. A., Ljunggren, H. G., Malmberg, K. J. & Michaelsson, J. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood 115, 1166–1174 (2010).

    CAS  PubMed  Google Scholar 

  74. Oppenheim, D. E. et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat. Immunol. 6, 928–937 (2005).

    CAS  PubMed  Google Scholar 

  75. Chen, R. et al. Molecular dissection of 2B4 signaling: implications for signal transduction by SLAM-related receptors. Mol. Cell. Biol. 24, 5144–5156 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Watzl, C. & Long, E. O. Natural killer cell inhibitory receptors block actin cytoskeleton-dependent recruitment of 2B4 (CD244) to lipid rafts. J. Exp. Med. 197, 77–85 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Meinke, S. & Watzl, C. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation. Front. Immunol. 4, 3 (2013).

    PubMed  PubMed Central  Google Scholar 

  78. Chan, B. et al. SAP couples Fyn to SLAM immune receptors. Nat. Cell Biol. 5, 155–160 (2003).

    CAS  PubMed  Google Scholar 

  79. Latour, S. et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signaling in immune regulation. Nat. Cell Biol. 5, 149–154 (2003).

    CAS  PubMed  Google Scholar 

  80. Cannons, J. L. et al. Biochemical and genetic evidence for a SAP-PKC-theta interaction contributing to IL-4 regulation. J. Immunol. 185, 2819–2827 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gu, C. et al. The X-linked lymphoproliferative disease gene product SAP associates with PAK-interacting exchange factor and participates in T cell activation. Proc. Natl Acad. Sci. USA 103, 14447–14452 (2006).

    CAS  PubMed  Google Scholar 

  82. Li, C., Schibli, D. & Li, S. S. The XLP syndrome protein SAP interacts with SH3 proteins to regulate T cell signaling and proliferation. Cell Signal. 21, 111–119 (2009).

    PubMed  Google Scholar 

  83. Hornstein, I., Alcover, A. & Katzav, S. Vav proteins, masters of the world of cytoskeleton organization. Cell Signal. 16, 1–11 (2004).

    CAS  PubMed  Google Scholar 

  84. Swat, W. & Fujikawa, K. The Vav family: at the crossroads of signaling pathways. Immunol. Res. 32, 259–265 (2005).

    CAS  PubMed  Google Scholar 

  85. Kim, H. S., Das, A., Gross, C. C., Bryceson, Y. T. & Long, E. O. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity 32, 175–186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cella, M. et al. Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity. J. Exp. Med. 200, 817–823 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Riteau, B., Barber, D. F. & Long, E. O. Vav1 phosphorylation is induced by beta2 integrin engagement on natural killer cells upstream of actin cytoskeleton and lipid raft reorganization. J. Exp. Med. 198, 469–474 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Urlaub, D., Hofer, K., Muller, M. L. & Watzl, C. LFA-1 activation in NK cells and their subsets: influence of receptors, maturation, and cytokine stimulation. J. Immunol. 198, 1944–1951 (2017).

    CAS  PubMed  Google Scholar 

  89. Hoffmann, S. C., Cohnen, A., Ludwig, T. & Watzl, C. 2B4 engagement mediates rapid LFA-1 and actin-dependent NK cell adhesion to tumor cells as measured by single cell force spectroscopy. J. Immunol. 186, 2757–2764 (2011).

    CAS  PubMed  Google Scholar 

  90. Chuang, S. S., Kumaresan, P. R. & Mathew, P. A. 2B4 (CD244)-mediated activation of cytotoxicity and IFN-gamma release in human NK cells involves distinct pathways. J. Immunol. 167, 6210–6216 (2001).

    CAS  PubMed  Google Scholar 

  91. Chen, X., Trivedi, P. P., Ge, B., Krzewski, K. & Strominger, J. L. Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc. Natl Acad. Sci. USA 104, 6329–6334 (2007).

    CAS  PubMed  Google Scholar 

  92. Sivori, S. et al. 2B4 functions as a co-receptor in human NK cell activation. Eur. J. Immunol. 30, 787–793 (2000).

    CAS  PubMed  Google Scholar 

  93. Bida, A. T. et al. 2B4 utilizes ITAM-containing receptor complexes to initiate intracellular signaling and cytolysis. Mol. Immunol. 48, 1149–1159 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chiesa, S. et al. Multiplicity and plasticity of natural killer cell signaling pathways. Blood 107, 2364–2372 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Saborit-Villarroya, I. et al. The adaptor protein 3BP2 binds human CD244 and links this receptor to Vav signaling, ERK activation, and NK cell killing. J. Immunol. 175, 4226–4235 (2005).

    CAS  PubMed  Google Scholar 

  96. Jevremovic, D., Billadeau, D. D., Schoon, R. A., Dick, C. J. & Leibson, P. J. Regulation of NK cell-mediated cytotoxicity by the adaptor protein 3BP2. J. Immunol. 166, 7219–7228 (2001).

    CAS  PubMed  Google Scholar 

  97. Saborit-Villarroya, I. et al. The adaptor 3BP2 activates CD244-mediated cytotoxicity in PKC- and SAP-dependent mechanisms. Mol. Immunol. 45, 3446–3453 (2008).

    CAS  PubMed  Google Scholar 

  98. Tassi, I. & Colonna, M. The cytotoxicity receptor CRACC (CS-1) recruits EAT-2 and activates the PI3K and phospholipase Cgamma signaling pathways in human NK cells. J. Immunol. 175, 7996–8002 (2005).

    CAS  PubMed  Google Scholar 

  99. Clarkson, N. G. & Brown, M. H. Inhibition and activation by CD244 depends on CD2 and phospholipase C-gamma1. J. Biol. Chem. 284, 24725–24734 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bouchon, A., Cella, M., Grierson, H. L., Cohen, J. I. & Colonna, M. Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J. Immunol. 167, 5517–5521 (2001).

    CAS  PubMed  Google Scholar 

  101. Eissmann, P. & Watzl, C. Molecular analysis of NTB-A signaling: a role for EAT-2 in NTB-A-mediated activation of human NK cells. J. Immunol. 177, 3170–3177 (2006).

    CAS  PubMed  Google Scholar 

  102. Wang, N. et al. Cutting edge: the adapters EAT-2A and -2B are positive regulators of CD244- and CD84-dependent NK cell functions in the C57BL/6 mouse. J. Immunol. 185, 5683–5687 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in Dong’s lab was supported by the Natural Science Foundation of China (to Z.D., 81725007, 31830027, and 31821003), National Key Research and Development Program (2018YFC1003900 to Z.D), Beijing Natural Science Foundation (5172018 to Z.D.), the Postdoctoral Innovation Talent Support Program of China (to S.C., BX201700134) and the China Postdoctoral Science Foundation grant (to S.C., 2017M620051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shasha Chen or Zhongjun Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Dong, Z. NK cell recognition of hematopoietic cells by SLAM-SAP families. Cell Mol Immunol 16, 452–459 (2019). https://doi.org/10.1038/s41423-019-0222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0222-4

Keywords

This article is cited by

Search

Quick links