Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Composite tissue allotransplantation: opportunities and challenges

Abstract

Vascularized composite allotransplants (VCAs) have unique properties because of diverse tissue components transplanted en mass as a single unit. In addition to surgery, this type of transplant also faces enormous immunological challenges that demand a detailed analysis of all aspects of alloimmune responses, organ preservation, and injury, as well as the immunogenicity of various tissues within the VCA grafts to further improve graft and patient outcomes. Moreover, the side effects of long-term immunosuppression for VCA patients need to be carefully balanced with the potential benefit of a non-life-saving procedure. In this review article, we provide a comprehensive update on limb and face transplantation, with a specific emphasis on the alloimmune responses to VCA, established and novel immunosuppressive treatments, and patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shores, J. T., Brandacher, G. & Lee, W. P. Hand and upper extremity transplantation: an update of outcomes in the worldwide experience. Plast. Reconstr. Surg. 135, 351e–360e (2015).

    CAS  PubMed  Google Scholar 

  2. Brannstrom, M. Womb transplants with live births: an update and the future. Expert. Opin. Biol. Ther. 17, 1105–1112 (2017).

    PubMed  Google Scholar 

  3. Sinha, I. & Pomahac, B. Split rejection in vascularized composite allotransplantation. Eplasty 13, e53 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Petruzzo, P. & Dubernard, J. M. The International Registry on Hand and Composite Tissue allotransplantation. Clin. Transpl. 247–253 (2011) PMID: 22755418.

  5. Fischer, S. et al. Acute rejection in vascularized composite allotransplantation. Curr. Opin. Organ Transplant. 19, 531–544 (2014).

    PubMed  Google Scholar 

  6. Mathes, D. W. et al. Split tolerance to a composite tissue allograft in a swine model. Transplantation 75, 25–31 (2003).

    CAS  PubMed  Google Scholar 

  7. Kaufman, C. L. et al. Immunobiology in VCA. Transpl. Int. 29, 644–654 (2016).

    PubMed  Google Scholar 

  8. Kanitakis, J. The challenge of dermatopathological diagnosis of composite tissue allograft rejection: a review. J. Cutan. Pathol. 35, 738–744 (2008).

    PubMed  Google Scholar 

  9. Kueckelhaus, M. et al. Utility of sentinel flaps in assessing facial allograft rejection. Plast. Reconstr. Surg. 135, 250–258 (2015).

    CAS  PubMed  Google Scholar 

  10. Kueckelhaus, M. et al. Vascularized composite allotransplantation: current standards and novel approaches to prevent acute rejection and chronic allograft deterioration. Transpl. Int. 29, 655–662 (2016).

    PubMed  Google Scholar 

  11. Clark, R. A. et al. The vast majority of CLA + T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    CAS  PubMed  Google Scholar 

  12. Clark, R. A. Skin-resident T cells: the ups and downs of on site immunity. J. Invest. Dermatol. 130, 362–370 (2010).

    CAS  PubMed  Google Scholar 

  13. Li, J., Olshansky, M., Carbone, F. R. & Ma, J. Z. Transcriptional analysis of T cells resident in human skin. PLoS ONE 11, e0148351 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl. Med. 4, 117ra117 (2012).

    Google Scholar 

  15. Jiang, X. et al. Skin infection generates non-migratory memory CD8 + T(RM) cells providing global skin immunity. Nature 483, 227–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Egawa, G. & Kabashima, K. Skin as a peripheral lymphoid organ: revisiting the concept of skin-associated lymphoid tissues. J. Invest. Dermatol. 131, 2178–2185 (2011).

    CAS  PubMed  Google Scholar 

  17. Chadha, R., Leonard, D. A., Kurtz, J. M. & Cetrulo, C. L. Jr The unique immunobiology of the skin: implications for tolerance of vascularized composite allografts. Curr. Opin. Organ Transplant. 19, 566–572 (2014).

    CAS  PubMed  Google Scholar 

  18. Lian, C. G. et al. Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. Mod. Pathol. 27, 788–799 (2014).

    CAS  PubMed  Google Scholar 

  19. Mathes, D. W. et al. Tolerance to vascularized composite allografts in canine mixed hematopoietic chimeras. Transplantation 92, 1301–1308 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Hettiaratchy, S. et al. Tolerance to composite tissue allografts across a major histocompatibility barrier in miniature swine. Transplantation 77, 514–521 (2004).

    PubMed  Google Scholar 

  21. Bhan, A. K., Mihm, M. C. Jr. & Dvorak, H. F. T cell subsets in allograft rejection. In situ characterization of T cell subsets in human skin allografts by the use of monoclonal antibodies. J. Immunol. 129, 1578–1583 (1982).

    CAS  PubMed  Google Scholar 

  22. Sarhane, K. A. et al. Diagnosing skin rejection in vascularized composite allotransplantation: advances and challenges. Clin. Transplant. 28, 277–285 (2014).

    PubMed  Google Scholar 

  23. Schlapbach, C. et al. Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci. Transl. Med. 6, 219ra218 (2014).

    Google Scholar 

  24. Laggner, U. et al. Identification of a novel proinflammatory human skin-homing Vgamma9Vdelta2 T cell subset with a potential role in psoriasis. J. Immunol. 187, 2783–2793 (2011).

    CAS  PubMed  Google Scholar 

  25. Issa, F. Vascularized composite allograft-specific characteristics of immune responses. Transpl. Int. 29, 672–681 (2016).

    PubMed  Google Scholar 

  26. Taflin, C., Charron, D., Glotz, D. & Mooney, N. Immunological function of the endothelial cell within the setting of organ transplantation. Immunol. Lett. 139, 1–6 (2011).

    CAS  PubMed  Google Scholar 

  27. Cines, D. B. et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527–3561 (1998).

    CAS  PubMed  Google Scholar 

  28. Pober, J. S., Kluger, M. S. & Schechner, J. S. Human endothelial cell presentation of antigen and the homing of memory/effector T cells to skin. Ann. N. Y. Acad. Sci. 941, 12–25 (2001).

    CAS  PubMed  Google Scholar 

  29. Karmann, K., Hughes, C. C., Fanslow, W. C. & Pober, J. S. Endothelial cells augment the expression of CD40 ligand on newly activated human CD4 + T cells through a CD2/LFA-3 signaling pathway. Eur. J. Immunol. 26, 610–617 (1996).

    CAS  PubMed  Google Scholar 

  30. Karmann, K., Hughes, C. C., Schechner, J., Fanslow, W. C. & Pober, J. S. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc. Natl Acad. Sci. USA 92, 4342–4346 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pober, J. S. & Cotran, R. S. Cytokines and endothelial cell biology. Physiol. Rev. 70, 427–451 (1990).

    CAS  PubMed  Google Scholar 

  32. Sprague, A. H. & Khalil, R. A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol. 78, 539–552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosenberg, A. S. & Singer, A. Cellular basis of skin allograft rejection: an in vivo model of immune-mediated tissue destruction. Annu. Rev. Immunol. 10, 333–358 (1992).

    CAS  PubMed  Google Scholar 

  34. Hautz, T. et al. The impact of skin type and area on skin rejection in limb transplantation. VCA 1, 42–49 (2014).

    Google Scholar 

  35. Barth, R. N. et al. Vascularized bone marrow-based immunosuppression inhibits rejection of vascularized composite allografts in nonhuman primates. Am. J. Transplant. 11, 1407–1416 (2011).

    CAS  PubMed  Google Scholar 

  36. Ramirez, A. E. et al. A novel rat full-thickness hemi-abdominal wall/hindlimb osteomyocutaneous combined flap: influence of allograft mass and vascularized bone marrow content on vascularized composite allograft survival. Transpl. Int. 27, 977–986 (2014).

    CAS  PubMed  Google Scholar 

  37. Snider, M. E., Armstrong, L., Hudson, J. L. & Steinmuller, D. In vitro and in vivo cytotoxicity of T cells cloned from rejecting allografts. Transplantation 42, 171–177 (1986).

    CAS  PubMed  Google Scholar 

  38. Noble, R. L. & Steinmuller, D. Blocking of interleukin-2 production, but not the tissue destruction induced by cytotoxic T cells, by cyclosporine. Transplantation 47, 322–326 (1989).

    CAS  PubMed  Google Scholar 

  39. Lopdrup, R. G. et al. Seasonal variability precipitating hand transplant rejection? Transplantation 101, e313 (2017).

    PubMed  Google Scholar 

  40. Engebretsen, K. A., Johansen, J. D., Kezic, S., Linneberg, A. & Thyssen, J. P. The effect of environmental humidity and temperature on skin barrier function and dermatitis. J. Eur. Acad. Dermatol. Venereol. 30, 223–249 (2016).

    CAS  PubMed  Google Scholar 

  41. MacMurray, J. P., Barker, J. P., Armstrong, J. D., Bozzetti, L. P. & Kuhn, I. N. Circannual changes in immune function. Life Sci. 32, 2363–2370 (1983).

    CAS  PubMed  Google Scholar 

  42. Valvis, S. M., Waithman, J., Wood, F. M., Fear, M. W. & Fear, V. S. The immune response to skin trauma is dependent on the etiology of injury in a mouse model of burn and excision. J. Invest. Dermatol. 135, 2119–2128 (2015).

    CAS  PubMed  Google Scholar 

  43. Gregorio, J. et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med. 207, 2921–2930 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Guiducci, C. et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J. Exp. Med. 207, 2931–2942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Desch, A. N. et al. CD103 + pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208, 1789–1797 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao, Q. et al. CD103 + dendritic cells elicit CD8 + T cell responses to accelerate kidney injury in adriamycin nephropathy. J. Am. Soc. Nephrol. 27, 1344–1360 (2016).

    CAS  PubMed  Google Scholar 

  47. Azukizawa, H. et al. Induction of T-cell-mediated skin disease specific for antigen transgenically expressed in keratinocytes. Eur. J. Immunol. 33, 1879–1888 (2003).

    CAS  PubMed  Google Scholar 

  48. Chakraborty, R. et al. CD8( + ) lineage dendritic cells determine adaptive immune responses to inflammasome activation upon sterile skin injury. Exp. Dermatol. 27, 71–79 (2018).

    CAS  PubMed  Google Scholar 

  49. Kennedy-Crispin, M. et al. Human keratinocytes’ response to injury upregulates CCL20 and other genes linking innate and adaptive immunity. J. Invest. Dermatol. 132, 105–113 (2012).

    CAS  PubMed  Google Scholar 

  50. Paradis, T. J., Cole, S. H., Nelson, R. T. & Gladue, R. P. Essential role of CCR6 in directing activated T cells to the skin during contact hypersensitivity. J. Invest. Dermatol. 128, 628–633 (2008).

    CAS  PubMed  Google Scholar 

  51. Le Borgne, M. et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8 + T cell crosspriming in vivo. Immunity 24, 191–201 (2006).

    PubMed  Google Scholar 

  52. Zaba, L. C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou, L. et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    CAS  PubMed  Google Scholar 

  54. Oberhuber, R. et al. CD11c + dendritic cells accelerate the rejection of older cardiac transplants via interleukin-17A. Circulation 132, 122–131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, E. et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 199, 125–130 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Friedman, O. et al. Immunological and inflammatory mapping of vascularized composite allograft rejection processes in a rat model. PLoS ONE 12, e0181507 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Alegre, M. L., Goldstein, D. R. & Chong, A. S. Toll-like receptor signaling in transplantation. Curr. Opin. Organ Transplant. 13, 358–365 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Goldstein, D. R., Tesar, B. M., Akira, S. & Lakkis, F. G. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J. Clin. Invest. 111, 1571–1578 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    CAS  PubMed  Google Scholar 

  60. Oppenheim, J. J., Tewary, P., de la Rosa, G. & Yang, D. Alarmins initiate host defense. Adv. Exp. Med. Biol. 601, 185–194 (2007).

    PubMed  Google Scholar 

  61. Moussion, C., Ortega, N. & Girard, J. P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS ONE 3, e3331 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. Forster, R., Braun, A. & Worbs, T. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 33, 271–280 (2012).

    PubMed  Google Scholar 

  63. Zampell, J. C. et al. Regulation of adipogenesis by lymphatic fluid stasis: part I. Adipogenesis, fibrosis, and inflammation. Plast. Reconstr. Surg. 129, 825–834 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Datta, N., Devaney, S. G., Busuttil, R. W., Azari, K. & Kupiec-Weglinski, J. W. Prolonged cold ischemia time results in local and remote organ dysfunction in a murine model of vascularized composite transplantation. Am. J. Transplant. 17, 2572–2579 (2017).

    CAS  PubMed  Google Scholar 

  65. Tasigiorgos, S. et al. Face transplantation-current status and future developments. Transpl. Int. 31, 677–688 (2018).

    PubMed  Google Scholar 

  66. Landin, L. et al. Outcomes with respect to disabilities of the upper limb after hand allograft transplantation: a systematic review. Transpl. Int. 25, 424–432 (2012).

    PubMed  Google Scholar 

  67. Fries, C. A. et al. A hyperbaric warm perfusion system preserves tissue composites ex vivo and delays the onset of acute rejection. J. Reconstr. Microsurg. 35, 97–107 (2018).

    PubMed  Google Scholar 

  68. Morris, P. et al. Face transplantation: a review of the technical, immunological, psychological and clinical issues with recommendations for good practice. Transplantation 83, 109–128 (2007).

    PubMed  Google Scholar 

  69. Petruzzo, P. et al. Clinicopathological findings of chronic rejection in a face grafted patient. Transplantation 99, 2644–2650 (2015).

    PubMed  Google Scholar 

  70. Morelon, E. et al. Face transplantation: partial graft loss of the first case 10 years later. Am. J. Transplant. 17, 1935–1940 (2017).

    CAS  PubMed  Google Scholar 

  71. Kanitakis, J. et al. Chronic rejection in human vascularized composite allotransplantation (hand and face recipients): an update. Transplantation 100, 2053–2061 (2016).

    PubMed  Google Scholar 

  72. Weissenbacher, A. et al. Antibody-mediated rejection in hand transplantation. Transpl. Int. 27, e13–e17 (2014).

    CAS  PubMed  Google Scholar 

  73. Hautz, T. et al. Lymphoid neogenesis in skin of human hand, nonhuman primate, and rat vascularized composite allografts. Transpl. Int. 27, 966–976 (2014).

    PubMed  Google Scholar 

  74. Krezdorn, N. et al. Chronic rejection of human face allografts. Am. J. Transplant. 18, 1–10 (2018).

  75. Bakker, R. C. et al. Early interstitial accumulation of collagen type I discriminates chronic rejection from chronic cyclosporine nephrotoxicity. J. Am. Soc. Nephrol. 14, 2142–2149 (2003).

    CAS  PubMed  Google Scholar 

  76. Cendales, L. C. et al. The Banff 2007 working classification of skin-containing composite tissue allograft pathology. Am. J. Transplant. 8, 1396–1400 (2008).

    CAS  PubMed  Google Scholar 

  77. Lindholm, A. et al. The impact of acute rejection episodes on long-term graft function and outcome in 1347 primary renal transplants treated by 3 cyclosporine regimens. Transplantation 56, 307–315 (1993).

    CAS  PubMed  Google Scholar 

  78. Matas, A. J., Gillingham, K. J., Payne, W. D. & Najarian, J. S. The impact of an acute rejection episode on long-term renal allograft survival (t1/2). Transplantation 57, 857–859 (1994).

    CAS  PubMed  Google Scholar 

  79. Unadkat, J. V. et al. Composite tissue vasculopathy and degeneration following multiple episodes of acute rejection in reconstructive transplantation. Am. J. Transplant. 10, 251–261 (2010).

    CAS  PubMed  Google Scholar 

  80. Schneeberger, S. et al. Cytomegalovirus-related complications in human hand transplantation. Transplantation 80, 441–447 (2005).

    PubMed  Google Scholar 

  81. Barker, J. H. et al. Investigation of risk acceptance in facial transplantation. Plast. Reconstr. Surg. 118, 663–670 (2006).

    CAS  PubMed  Google Scholar 

  82. Lopez, M. M. et al. Long-term problems related to immunosuppression. Transpl. Immunol. 17, 31–35 (2006).

    CAS  PubMed  Google Scholar 

  83. Pomahac, B., Gobble, R. M. & Schneeberger, S. Facial and hand allotransplantation. Cold Spring Harb. Perspect. Med. 4 (2014).

  84. Brenner, M. J., Tung, T. H., Jensen, J. N. & Mackinnon, S. E. The spectrum of complications of immunosuppression: is the time right for hand transplantation? J. Bone Joint Surg. Am. 84-a, 1861–1870 (2002).

    Google Scholar 

  85. Conrad, A. et al. Epstein-Barr virus-associated smooth muscle tumors in a composite tissue allograft and a pediatric liver transplant recipient. Transpl. Infect. Dis. 15, E182–E186 (2013).

    CAS  PubMed  Google Scholar 

  86. Madani, H., Hettiaratchy, S., Clarke, A. & Butler, P. E. Immunosuppression in an emerging field of plastic reconstructive surgery: composite tissue allotransplantation. J. Plast. Reconstr. Aesthet. Surg. 61, 245–249 (2008).

    CAS  PubMed  Google Scholar 

  87. Siemionow, M. & Ozturk, C. Face transplantation: outcomes, concerns, controversies, and future directions. J. Craniofac. Surg. 23, 254–259 (2012).

    PubMed  Google Scholar 

  88. Knoll, B. M. et al. Infections following facial composite tissue allotransplantation–single center experience and review of the literature. Am. J. Transplant. 13, 770–779 (2013).

    CAS  PubMed  Google Scholar 

  89. Gordon, C. R., Avery, R. K., Abouhassan, W. & Siemionow, M. Cytomegalovirus and other infectious issues related to face transplantation: specific considerations, lessons learned, and future recommendations. Plast. Reconstr. Surg. 127, 1515–1523 (2011).

    CAS  PubMed  Google Scholar 

  90. Hammond, S. P. Infections in composite tissue allograft recipients. Infect. Dis. Clin. North Am. 27, 379–393 (2013).

    PubMed  Google Scholar 

  91. Broyles, J. M. et al. Characterization, prophylaxis, and treatment of infectious complications in craniomaxillofacial and upper extremity allotransplantation: a multicenter perspective. Plast. Reconstr. Surg. 133, 543e–551e (2014).

    CAS  PubMed  Google Scholar 

  92. Avery, R. K. Update on infections in composite tissue allotransplantation. Curr. Opin. Organ Transplant. 18, 659–664 (2013).

    CAS  PubMed  Google Scholar 

  93. Barret, J. P. et al. Full face transplant: the first case report. Ann. Surg. 254, 252–256 (2011).

    PubMed  Google Scholar 

  94. Cavadas, P. C., Ibanez, J., Thione, A. & Alfaro, L. Bilateral trans-humeral arm transplantation: result at 2 years. Am. J. Transplant. 11, 1085–1090 (2011).

    CAS  PubMed  Google Scholar 

  95. Hricik, D. E. et al. Long-term graft outcomes after steroid withdrawal in African American kidney transplant recipients receiving sirolimus and tacrolimus. Transplantation 83, 277–281 (2007).

    CAS  PubMed  Google Scholar 

  96. Augustine, J. J. & Hricik, D. E. Are maintenance corticosteroids no longer necessary after kidney transplantation? Clin. J. Am. Soc. Nephrol. 7, 383–384 (2012).

    CAS  PubMed  Google Scholar 

  97. Kaufman, C. L. et al. Graft vasculopathy in clinical hand transplantation. Am. J. Transplant. 12, 1004–1016 (2012).

    CAS  PubMed  Google Scholar 

  98. Kim, E. J. et al. Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection. Am. J. Transplant. 14, 59–69 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Vincenti, F. et al. Belatacept and long-term outcomes in kidney transplantation. N. Engl. J. Med. 374, 333–343 (2016).

    CAS  PubMed  Google Scholar 

  100. Grahammer, J. et al. Benefits and limitations of belatacept in 4 hand-transplanted patients. Am. J. Transplant. 17, 3228–3235 (2017).

    CAS  PubMed  Google Scholar 

  101. Olariu, R. et al. Intra-graft injection of tacrolimus promotes survival of vascularized composite allotransplantation. J. Surg. Res. 218, 49–57 (2017).

    CAS  PubMed  Google Scholar 

  102. Ravindra, K. V. et al. Hand transplantation in the United States: experience with 3 patients. Surgery 144, 638–643 (2008). discussion 643–644.

    PubMed  Google Scholar 

  103. Feturi, F. G. et al. Mycophenolic acid for topical immunosuppression in vascularized composite allotransplantation: optimizing formulation and preliminary evaluation of bioavailability and pharmacokinetics. Front. Surg. 5, 20 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. Diaz-Siso, J. R. et al. Initial experience of dual maintenance immunosuppression with steroid withdrawal in vascular composite tissue allotransplantation. Am. J. Transplant. 15, 1421–1431 (2015).

    CAS  PubMed  Google Scholar 

  105. Sakaguchi, S. Naturally arising CD4 + regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    CAS  PubMed  Google Scholar 

  106. Issa, F. & Wood, K. J. The potential role for regulatory T-cell therapy in vascularized composite allograft transplantation. Curr. Opin. Organ Transplant. 19, 558–565 (2014).

    CAS  PubMed  Google Scholar 

  107. Yang, J. H. & Eun, S. C. Therapeutic application of T regulatory cells in composite tissue allotransplantation. J. Transl. Med. 15, 218 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Sagoo, P. et al. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci. Transl. Med. 3, 83ra42 (2011).

    PubMed  PubMed Central  Google Scholar 

  109. Webster, K. E. et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 206, 751–760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Xu, H. et al. Utility of IL-2 complexes in promoting the survival of murine orthotopic forelimb vascularized composite allografts. Transplantation 102, 70–78 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Jindal, R. et al. Spontaneous resolution of acute rejection and tolerance induction with IL-2 fusion protein in vascularized composite allotransplantation. Am. J. Transplant. 15, 1231–1240 (2015).

    CAS  PubMed  Google Scholar 

  112. Kuo, Y. R. et al. Prolongation of composite tissue allotransplant survival by treatment with bone marrow mesenchymal stem cells is correlated with T-cell regulation in a swine hind-limb model. Plast. Reconstr. Surg. 127, 569–579 (2011).

    CAS  PubMed  Google Scholar 

  113. Kuo, Y. R. et al. Immunomodulatory effects of bone marrow-derived mesenchymal stem cells in a swine hemi-facial allotransplantation model. PLoS ONE 7, e35459 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, W. P. Hand transplantation: evolution of a personal outlook. J. Hand Surg. Am. 42, 286–290 (2017).

    PubMed  Google Scholar 

  115. Carriel, V. et al. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J. Neural Eng. 10, 026022 (2013).

    PubMed  Google Scholar 

  116. Lopatina, T. et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS ONE 6, e17899 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, G. et al. Transplantation of adipose-derived stem cells for peripheral nerve repair. Int. J. Mol. Med. 28, 565–572 (2011).

    PubMed  Google Scholar 

  118. Plock, J. A., Schnider, J. T., Solari, M. G., Zheng, X. X. & Gorantla, V. S. Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front. Immunol. 4, 175 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Buron, F. et al. Human mesenchymal stem cells and immunosuppressive drug interactions in allogeneic responses: an in vitro study using human cells. Transplant. Proc. 41, 3347–3352 (2009).

    CAS  PubMed  Google Scholar 

  120. Leonard, D. A. et al. Vascularized composite allograft tolerance across MHC barriers in a large animal model. Am. J. Transplant. 14, 343–355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kawai, T., Sachs, D. H., Sykes, M. & Cosimi, A. B. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 368, 1850–1852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Scandling, J. D. et al. Tolerance and withdrawal of immunosuppressive drugs in patients given kidney and hematopoietic cell transplants. Am. J. Transplant. 12, 1133–1145 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Stefan G. Tullius currently serves as an Einstein-BIH visiting fellow. This study was supported by the Einstein-BIH Visiting Fellow Program (to S.G.T., M.M. and I.M.S.) and the Biomedical Education Program (BMEP) of the German Academic Exchange Service (DAAD to J.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan G. Tullius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iske, J., Nian, Y., Maenosono, R. et al. Composite tissue allotransplantation: opportunities and challenges. Cell Mol Immunol 16, 343–349 (2019). https://doi.org/10.1038/s41423-019-0215-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0215-3

This article is cited by

Search

Quick links