Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissemination of brain inflammation in traumatic brain injury

Abstract

Traumatic brain injury (TBI) is recognized as a global health problem due to its increasing occurrence, challenging treatment, and persistent impacts on brain pathophysiology. Neural cell death in patients with TBI swiftly causes inflammation in the injured brain areas, which is recognized as focal brain inflammation. Focal brain inflammation causes secondary brain injury by exacerbating brain edema and neuronal death, while also exerting divergent beneficial effects, such as sealing the damaged limitans and removing cellular debris. Recent evidence from patients with TBI and studies on animal models suggest that brain inflammation after TBI is not only restricted to the focal lesion but also disseminates to remote areas of the brain. The dissemination of inflammation has been detected within days after the primary injury and persists chronically. This state of inflammation may be related to remote complications of TBI in patients, such as hyperthermia and hypopituitarism, and may lead to progressive neurodegeneration, such as chronic traumatic encephalopathy. Future studies should focus on understanding the mechanisms that govern the initiation and propagation of brain inflammation after TBI and its impacts on post-trauma brain pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Corps, K. N., Roth, T. L. & McGavern, D. B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 72, 355–362 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jassam, Y. N., Izzy, S., Whalen, M., McGavern, D. B. & El Khoury, J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95, 1246–1265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 56–87 (2019).

  4. Stocchetti, N. et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 16, 452–464 (2017).

    Article  PubMed  Google Scholar 

  5. Wilson, L. et al. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 16, 813–825 (2017).

    Article  PubMed  Google Scholar 

  6. Blennow, K. et al. Traumatic brain injuries. Nat. Rev. Dis. Prim. 2, 16084 (2016).

    Article  PubMed  Google Scholar 

  7. Maas, A. I., Stocchetti, N. & Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 7, 728–741 (2008).

    Article  PubMed  Google Scholar 

  8. Lingsma, H. F., Roozenbeek, B., Steyerberg, E. W., Murray, G. D. & Maas, A. I. Early prognosis in traumatic brain injury: from prophecies to predictions. Lancet Neurol. 9, 543–554 (2010).

    Article  PubMed  Google Scholar 

  9. Chandran, R. et al. A combination antioxidant therapy to inhibit NOX2 and activate Nrf2 decreases secondary brain damage and improves functional recovery after traumatic brain injury. J. Cereb. Blood. Flow. Metab. 38, 1818–1827 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Hinzman, J. M., Wilson, J. A., Mazzeo, A. T., Bullock, M. R. & Hartings, J. A. Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. J. Neurotrauma 33, 1775–1783 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Russo, M. V. & McGavern, D. B. Inflammatory neuroprotection following traumatic brain injury. Science 353, 783–785 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505, 223–228 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, Y. et al. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J. Neurosci. 37, 4692–4704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liesz, A. et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J. Neurosci. 35, 583–598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsieh, C. L. et al. CCR2 deficiency impairs macrophage infiltration and improves cognitive function after traumatic brain injury. J. Neurotrauma 31, 1677–1688 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clausen, F., Lorant, T., Lewen, A. & Hillered, L. T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J. Neurotrauma 24, 1295–1307 (2007).

    Article  PubMed  Google Scholar 

  17. Morganti, J. M. et al. CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury. J. Neurosci. 35, 748–760 (2015). (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, X. et al. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-kappaB pathway following experimental traumatic brain injury. J. Neuroinflamm. 14, 143 (2017).

    Article  CAS  Google Scholar 

  19. Chio, C. C. et al. Exercise attenuates neurological deficits by stimulating a critical HSP70/NF-κB/IL-6/synapsin I axis in traumatic brain injury rats. J. Neuroinflamm. 14, 90 (2017).

    Article  CAS  Google Scholar 

  20. Niemela, J. et al. IFN-β regulates CD73 and adenosine expression at the blood-brain barrier. Eur. J. Immunol. 38, 2718–2726 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Cekic, C. & Linden, J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 16, 177–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Szmydynger-Chodobska, J., Strazielle, N., Zink, B. J., Ghersi-Egea, J. F. & Chodobski, A. The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J. Cereb. Blood. Flow. Metab. 29, 1503–1516 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Semple, B. D., Bye, N., Rancan, M., Ziebell, J. M. & Morganti-Kossmann, M. C. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J. Cereb. Blood. Flow. Metab. 30, 769–782 (2010).

    Article  PubMed  Google Scholar 

  24. Homsi, S. et al. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J. Neurotrauma 27, 911–921 (2010).

    Article  PubMed  Google Scholar 

  25. Dohi, K. et al. Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J. Neuroinflamm. 7, 41 (2010).

    Article  CAS  Google Scholar 

  26. Edwards, P. et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet 365, 1957–1959 (2005).

    Article  PubMed  Google Scholar 

  27. Erturk, A. et al. Interfering with the chronic immune response rescues chronic degeneration after traumatic brain injury. J. Neurosci. 36, 9962–9975 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Johnson, V. E. et al. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136, 28–42 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ramlackhansingh, A. F. et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol. 70, 374–383 (2011).

    Article  PubMed  Google Scholar 

  30. Folkersma, H. et al. Widespread and prolonged increase in (R)-(11)C-PK11195 binding after traumatic brain injury. J. Nucl. Med. 52, 1235–1239 (2011).

    Article  PubMed  Google Scholar 

  31. Coughlin, J. M. et al. Neuroinflammation and brain atrophy in former NFL players: An in vivo multimodal imaging pilot study. Neurobiol. Dis. 74, 58–65 (2015).

    Article  PubMed  Google Scholar 

  32. Coughlin, J. M. et al. Imaging of glial cell activation and white matter integrity in brains of active and recently retired national football league players. JAMA Neurol. 74, 67–74 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Burda, J. E., Bernstein, A. M. & Sofroniew, M. V. Astrocyte roles in traumatic brain injury. Exp. Neurol. 275(Pt 3), 305–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Gao, T. L. et al. Expression of HMGB1 and RAGE in rat and human brains after traumatic brain injury. J. Trauma Acute Care Surg. 72, 643–649 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Pan, H., Wang, H., Wang, X., Zhu, L. & Mao, L. The absence of Nrf2 enhances NF-kappaB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediat. Inflamm. 2012, 217580 (2012).

    Article  CAS  Google Scholar 

  37. Almeida-Suhett, C. P., Li, Z., Marini, A. M., Braga, M. F. & Eiden, L. E. Temporal course of changes in gene expression suggests a cytokine-related mechanism for long-term hippocampal alteration after controlled cortical impact. J. Neurotrauma 31, 683–690 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. White, T. E. et al. Gene expression patterns following unilateral traumatic brain injury reveals a local pro-inflammatory and remote anti-inflammatory response. BMC Genom. 14, 282 (2013).

    Article  CAS  Google Scholar 

  39. Frieler, R. A. et al. Depletion of macrophages in CD11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury. Brain Res. 1624, 103–112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lagraoui, M. et al. Controlled cortical impact and craniotomy induce strikingly similar profiles of inflammatory gene expression, but with distinct kinetics. Front. Neurol. 3, 155 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dalgard, C. L. et al. The cytokine temporal profile in rat cortex after controlled cortical impact. Front. Mol. Neurosci. 5, 6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Niesman, I. R. et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J. Neuroinflamm. 11, 39 (2014).

    Article  CAS  Google Scholar 

  43. Dash, P. K., Mach, S. A. & Moore, A. N. Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. J. Neurotrauma 17, 69–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, X. H., Johnson, V. E., Uryu, K., Trojanowski, J. Q. & Smith, D. H. A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain. Pathol. 19, 214–223 (2009).

    Article  PubMed  Google Scholar 

  45. Crane, P. K. et al. Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathologic findings. JAMA Neurol. 73, 1062–1069 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kumar, R. G. et al. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav. Immun. 45, 253–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Roberts, D. J. et al. Association between the cerebral inflammatory and matrix metalloproteinase responses after severe traumatic brain injury in humans. J. Neurotrauma 30, 1727–1736 (2013).

    Article  PubMed  Google Scholar 

  48. Adamczak, S. et al. Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: clinical article. J. Neurosurg. 117, 1119–1125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J. et al. Traumatic brain injury-associated coagulopathy. J. Neurotrauma 29, 2597–2605 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tian, Y. et al. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury. Blood 125, 2151–2159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shlosberg, D., Benifla, M., Kaufer, D. & Friedman, A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol. 6, 393–403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scheid, R., Preul, C., Gruber, O., Wiggins, C. & von Cramon, D. Y. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am. J. Neuroradiol. 24, 1049–1056 (2003).

    PubMed  PubMed Central  Google Scholar 

  53. Iwamura, A. et al. Diffuse vascular injury: convergent-type hemorrhage in the supratentorial white matter on susceptibility-weighted image in cases of severe traumatic brain damage. Neuroradiology 54, 335–343 (2012).

    Article  PubMed  Google Scholar 

  54. Glushakova, O. Y., Johnson, D. & Hayes, R. L. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J. Neurotrauma 31, 1180–1193 (2014).

    Article  PubMed  Google Scholar 

  55. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Swystun, L. L. & Liaw, P. C. The role of leukocytes in thrombosis. Blood 128, 753–762 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Thompson, H. J., Pinto-Martin, J. & Bullock, M. R. Neurogenic fever after traumatic brain injury: an epidemiological study. J. Neurol. Neurosurg. Psychiatry 74, 614–619 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang, J. Y., Gao, G. Y., Li, W. P., Yu, M. K. & Zhu, C. Early indicators of prognosis in 846 cases of severe traumatic brain injury. J. Neurotrauma 19, 869–874 (2002).

    Article  PubMed  Google Scholar 

  59. Behr, R., Erlingspiel, D. & Becker, A. Early and longtime modifications of temperature regulation after severe head injury. Prognostic implications. Ann. N. Y. Acad. Sci. 813, 722–732 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Heindl, U. T. & Laub, M. C. Outcome of persistent vegetative state following hypoxic or traumatic brain injury in children and adolescents. Neuropediatrics 27, 94–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Sazbon, L. & Groswasser, Z. Outcome in 134 patients with prolonged posttraumatic unawareness. Part 1: Parameters determining late recovery of consciousness. J. Neurosurg. 72, 75–80 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Thompson, H. J., Hoover, R. C., Tkacs, N. C., Saatman, K. E. & McIntosh, T. K. Development of posttraumatic hyperthermia after traumatic brain injury in rats is associated with increased periventricular inflammation. J. Cereb. Blood. Flow. Metab. 25, 163–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Tanriverdi, F. et al. Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocr. Rev. 36, 305–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Zheng, P., He, B., Guo, Y., Zeng, J. & Tong, W. Decreased apparent diffusion coefficient in the pituitary and correlation with hypopituitarism in patients with traumatic brain injury. J. Neurosurg. 123, 75–80 (2015).

    Article  PubMed  Google Scholar 

  65. Kasturi, B. S. & Stein, D. G. Traumatic brain injury causes long-term reduction in serum growth hormone and persistent astrocytosis in the cortico-hypothalamo-pituitary axis of adult male rats. J. Neurotrauma 26, 1315–1324 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tanriverdi, F. et al. Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity? Eur. J. Endocrinol. 159, 7–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Stocchetti, N. & Zanier, E. R. Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. Crit. Care. 20, 148 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. McKee, A. C., Daneshvar, D. H., Alvarez, V. E. & Stein, T. D. The neuropathology of sport. Acta Neuropathol. 127, 29–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Hayes, J. P. et al. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer’s disease. Brain 140, 813–825 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Cherry, J. D. et al. Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathol. Commun. 4, 112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghosh, S. et al. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J. Neurosci. 33, 5053–5064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maphis, N. et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138, 1738–1755 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Immonen, R. J. et al. Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat—11 months follow-up. Exp. Neurol. 215, 29–40 (2009).

    Article  PubMed  Google Scholar 

  74. Evans, T. M. et al. The effect of mild traumatic brain injury on peripheral nervous system pathology in wild-type mice and the G93A mutant mouse model of motor neuron disease. Neuroscience 298, 410–423 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt, S. et al. Genes and environmental exposures in veterans with amyotrophic lateral sclerosis: the GENEVA study. Rationale, study design and demographic characteristics. Neuroepidemiology 30, 191–204 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schmidt, S., Kwee, L. C., Allen, K. D. & Oddone, E. Z. Association of ALS with head injury, cigarette smoking and APOE genotypes. J. Neurol. Sci. 291, 22–29 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lehman, E. J., Hein, M. J., Baron, S. L. & Gersic, C. M. Neurodegenerative causes of death among retired National Football League players. Neurology 79, 1970–1974 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wu, J. et al. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J. Neurosci. 34, 10989–11006 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gyoneva, S. & Ransohoff, R. M. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol. Sci. 36, 471–480 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weckbach, S. et al. Challenging the role of adaptive im munity in neurotrauma: Rag1 -/- mice lacking mature B and T cells do not show neuroprotection after closed head injury. J. Neurotrauma 29, 1233–1242 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mencl, S. et al. FTY720 does not protect from traumatic brain injury in mice despite reducing posttraumatic inflammation. J. Neuroimmunol. 274, 125–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Cuevas-Diaz Duran, R., Wei, H. & Wu, J. Q. Single-cell RNA-sequencing of the brain. Clin. Transl. Med. 6, 20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Neumann, J. et al. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol. 129, 259–277 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Odoardi, F. et al. T cells become licensed in the lung to enter the central nervous system. Nature 488, 675–679 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Herz, J., Filiano, A. J., Smith, A., Yogev, N. & Kipnis, J. Myeloid cells in the central nervous system. Immunity 46, 943–956 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Prinz, M. & Priller, J. The role of peripheral immune cells in the CNS in steady state and disease. Nat. Neurosci. 20, 136–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Peter, I. et al. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol. 75, 939–946 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Heneka, M. T., Golenbock, D. T. & Latz, E. Innate immunity in Alzheimer’s disease. Nat. Immunol. 16, 229–236 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories was supported in part by grants from the National Science Foundation of China (Grant numbers 81720108015, 91642205, and 81830038), National Key Research and Development Program of China (2018YFC1312200), Tianjin Municipal Science and Technology Commission (15ZXLCSY00060), funds from the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, and Barrow Neurological Foundation. We thank Elaine Shi for providing editorial assistance.

Author contributions

F.-D.S., J.Z. and J.F.D. formulated the concept, K.S. performed the literature search. All authors contributed to drafting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Dong Shi.

Ethics declarations

Competing interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Zhang, J., Dong, Jf. et al. Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol 16, 523–530 (2019). https://doi.org/10.1038/s41423-019-0213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0213-5

Keywords

This article is cited by

Search

Quick links