Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pursuit of transplantation tolerance: new mechanistic insights

Abstract

Donor-specific transplantation tolerance that enables weaning from immunosuppressive drugs but retains immune competence to non-graft antigens has been a lasting pursuit since the discovery of neonatal tolerance. More recently, efforts have been devoted not only to understanding how transplantation tolerance can be induced but also the mechanisms necessary to maintain it as well as how inflammatory exposure challenges its durability. This review focuses on recent advances regarding key peripheral mechanisms of T cell tolerance, with the underlying hypothesis that a combination of several of these mechanisms may afford a more robust and durable tolerance and that a better understanding of these individual pathways may permit longitudinal tracking of tolerance following clinical transplantation to serve as biomarkers. This review may enable a personalized assessment of the degree of tolerance in individual patients and the opportunity to strengthen the robustness of peripheral tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brouard, S. et al. The natural history of clinical operational tolerance after kidney transplantation through twenty-seven cases. Am. J. Transplant. 12, 3296–3307 (2012).

    CAS  PubMed  Google Scholar 

  2. Kawai, T. et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353–361 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Scandling, J. D. et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N. Engl. J. Med. 358, 362–368 (2008).

    CAS  PubMed  Google Scholar 

  4. Leventhal, J. et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci. Transl. Med 4, 124ra128 (2012).

    Google Scholar 

  5. Kawai, T. et al. Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am. J. Transplant. 14, 1599–1611 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller, M. L., Chong, A. S. & Alegre, M. L. Fifty shades of tolerance. Curr. Transplant. Rep. 4, 262–269 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. You S. and Chatenoud L. The concerted action of multiple mechanisms to induce and sustain transplant tolerance. OBM Transplantation 2, (2018) https://doi.org/10.21926/obm.transplant.1804025.

    Google Scholar 

  8. Wang, T. et al. Infection with the intracellular bacterium, Listeria monocytogenes, overrides established tolerance in a mouse cardiac allograft model. Am. J. Transplant. 10, 1524–1533 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawai, T. et al. Tolerance: one transplant for life. Transplantation 98, 117–121 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Nikolich-Zugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4, 123–132 (2004).

    CAS  PubMed  Google Scholar 

  11. Honjo, K., Xu, X. Y. & Bucy, R. P. Heterogeneity of T cell clones specific for a single indirect alloantigenic epitope (I-Ab/H-2Kd54-68) that mediate transplant rejection. Transplantation 70, 1516–1524 (2000).

    CAS  PubMed  Google Scholar 

  12. Zhong, S. et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc. Natl Acad. Sci. USA 110, 6973–6978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krogsgaard, M. et al. Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Mol. Cell 12, 1367–1378 (2003).

    CAS  PubMed  Google Scholar 

  14. Labrecque, N. et al. How much TCR does a T cell need? Immunity 15, 71–82 (2001).

    CAS  PubMed  Google Scholar 

  15. Cawthon, A. G., Lu, H. & Alexander-Miller, M. A. Peptide requirement for CTL activation reflects the sensitivity to CD3 engagement: correlation with CD8αβ versus CD8αα expression. J. Immunol. 167, 2577–2584 (2001).

    CAS  PubMed  Google Scholar 

  16. Kuball, J. et al. Increasing functional avidity of TCR-redirected T cells by removing defined glycosylation sites in the TCR constant domain. J. Exp. Med. 206, 463–475 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Minguet, S., Swamy, M., Alarcón, B., Luescher, I. F. & Schamel, W. W. A. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007).

    CAS  PubMed  Google Scholar 

  18. Fahmy, T. M., Bieler, J. G., Edidin, M. & Schneck, J. P. Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 14, 135–143 (2001).

    CAS  PubMed  Google Scholar 

  19. Richer, M. J., Nolz, J. C. & Harty, J. T. Pathogen-specific inflammatory milieux tune the antigen sensitivity of CD8(+) T cells by enhancing T cell receptor signaling. Immunity 38, 140–152 (2013).

    CAS  PubMed  Google Scholar 

  20. Persaud, S. P., Parker, C. R., Lo, W.-L., Weber, K. S. & Allen, P. M. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat. Immunol. 15, 266–274 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ioannidou, K. et al. Heterogeneity assessment of functional T cell avidity. Sci. Rep. 7, 44320–44320 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. von Essen, M. R., Kongsbak, M. & Geisler, C. Mechanisms behind functional avidity maturation in T cells. Clin. Dev. Immunol. 2012, 163453 (2012).

    Google Scholar 

  23. Hesse, M. D., Karulin, A. Y., Boehm, B. O., Lehmann, P. V. & Tary-Lehmann, M. A. T. Cell clone’s avidity is a function of its activation state. J. Immunol. 167, 1353–1361 (2001).

    CAS  PubMed  Google Scholar 

  24. Miller, M. L. et al. Distinct graft-specific TCR avidity profiles during acute rejection and tolerance. Cell Rep. 24, 2112–2126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Savage, P. A., Boniface, J. J. & Davis, M. M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    CAS  PubMed  Google Scholar 

  26. Slifka, M. K. & Whitton, J. L. Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nat. Immunol. 2, 711–717 (2001).

    CAS  PubMed  Google Scholar 

  27. Busch, D. H. & Pamer, E. G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dutoit, V. et al. Heterogeneous T-cell response to MAGE-A10(254-262): high avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res. 61, 5850–5856 (2001).

    CAS  PubMed  Google Scholar 

  29. Honjo, K., Yan, Xu. X., Kapp, J. A. & Bucy, R. P. Evidence for cooperativity in the rejection of cardiac grafts mediated by CD4+ TCR Tg T cells specific for a defined allopeptide. Am. J. Transplant. 4, 1762–1768 (2004).

    CAS  PubMed  Google Scholar 

  30. Enouz, S., Carrie, L., Merkler, D., Bevan, M. J. & Zehn, D. Autoreactive T cells bypass negative selection and respond to self-antigen stimulation during infection. J. Exp. Med. 209, 1769–1779 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ozga, A. J. et al. pMHC affinity controls duration of CD8+ T cell–DC interactions and imprints timing of effector differentiation versus expansion. J. Exp. Med. 213, 2811–2829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Alexander-Miller, M. A., Leggatt, G. R. & Berzofsky, J. A. Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl. Acad. Sci. 93, 4102–4107 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeh, H. J., Perry-Lalley, D., Dudley, M. E., Rosenberg, S. A. & Yang, J. C. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J. Immunol. 162, 989–994 (1999).

    CAS  PubMed  Google Scholar 

  34. Zhu, Z. et al. CD4+ T cell help selectively enhances high-avidity tumor antigen-specific CD8+ T Cells. J. Immunol. 195, 3482–3489 (2015).

    CAS  PubMed  Google Scholar 

  35. Zehn, D. & Bevan, M. J. T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25, 261–270 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Anderton, S. M. & Fillatreau, S. Activated B cells in autoimmune diseases: the case for a regulatory role. Nat. Clin. Pract. Rheumatol. 4, 657–666 (2008).

    CAS  PubMed  Google Scholar 

  37. Black, C. M., Armstrong, T. D. & Jaffee, E. M. Apoptosis-regulated low-avidity cancer-specific CD8(+) T cells can be rescued to eliminate HER2/neu-expressing tumors by costimulatory agonists in tolerized mice. Cancer Immunol. Res 2, 307–319 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mallone, R. et al. Functional avidity directs T-cell fate in autoreactive CD4+ T cells. Blood 106, 2798–2805 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yeh, W. I. et al. Avidity and bystander suppressive capacity of human regulatory T cells expressing de novo autoreactive t-cell receptors in Type 1 diabetes. Front. Immunol. 8, 1313 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Tsang, J. Y. et al. The potency of allospecific Tregs cells appears to correlate with T cell receptor functional avidity. Am. J. Transplant. 11, 1610–1620 (2011).

    CAS  PubMed  Google Scholar 

  41. Lee, I. et al. Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J. Exp. Med. 201, 1037–1044 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Young, J. S. et al. Erosion of transplantation tolerance after infection. Am. J. Transplant. 17, 81–90 (2017).

    CAS  PubMed  Google Scholar 

  43. Francis, R. S. et al. Induction of transplantation tolerance converts potential effector T cells into graft-protective regulatory T cells. Eur. J. Immunol. 41, 726–738 (2011).

    CAS  PubMed  Google Scholar 

  44. Kendal, A. R. et al. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J. Exp. Med. 208, 2043–2053 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brennan, T. V. et al. Requirements for prolongation of allograft survival with regulatory T cell infusion in lymphosufficient hosts. J. Surg. Res. 169, e69–e75 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin, C. Y., Graca, L., Cobbold, S. P. & Waldmann, H. Dominant transplantation tolerance impairs CD8+ T cell function but not expansion. Nat. Immunol. 3, 1208–1213 (2002).

    CAS  PubMed  Google Scholar 

  47. Graca, L. et al. Both CD4(+)CD25(+) and CD4(+)CD25(−) regulatory cells mediate dominant transplantation tolerance. J. Immunol. 168, 5558–5565 (2002).

    CAS  PubMed  Google Scholar 

  48. Feng, G. et al. Exogenous IFN-gamma ex vivo shapes the alloreactive T-cell repertoire by inhibition of Th17 responses and generation of functional Foxp3 + regulatory T cells. Eur. J. Immunol. 38, 2512–2527 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Graca, L., Cobbold, S. P. & Waldmann, H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med. 195, 1641–1646 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, L. et al. TLR engagement prevents transplantation tolerance. Am. J. Transplant. 6, 2282–2291 (2006).

    CAS  PubMed  Google Scholar 

  51. Miller, M. L. et al. Spontaneous restoration of transplantation tolerance after acute rejection. Nat. Commun. 6, 7566 (2015).

    PubMed  Google Scholar 

  52. Fan, Z. et al. In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response. Nat. Med. 16, 718–722 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Regateiro, F. S. et al. Foxp3 expression is required for the induction of therapeutic tissue tolerance. J. Immunol. 189, 3947–3956 (2012).

    CAS  PubMed  Google Scholar 

  54. Yamaguchi, T., Wing, J. B. & Sakaguchi, S. Two modes of immune suppression by Foxp3( ) regulatory T cells under inflammatory or non-inflammatory conditions. Semin. Immunol. 23, 424–430 (2011).

    CAS  PubMed  Google Scholar 

  55. Thornton, A. M. & Shevach, E. M. CD4 + CD25 + immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206–1212 (2003).

    CAS  PubMed  Google Scholar 

  57. Chen, W., Liang, X., Peterson, A. J., Munn, D. H. & Blazar, B. R. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 181, 5396–5404 (2008).

    CAS  PubMed  Google Scholar 

  58. Wang, J. et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176, 1–14 (2019).

    CAS  Google Scholar 

  59. Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    CAS  PubMed  Google Scholar 

  60. Huang, C. T. et al. Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004).

    CAS  PubMed  Google Scholar 

  61. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cretney, E., Kallies, A. & Nutt, S. L. Differentiation and function of Foxp3(+) effector regulatory T cells. Trends Immunol. 34, 74–80 (2013).

    CAS  PubMed  Google Scholar 

  63. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458, 351–356 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Levine, A. G. et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546, 421–425 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ohnmacht, C. et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 349, 989–993 (2015).

    CAS  PubMed  Google Scholar 

  67. Sefik, E. et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349, 993–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Malchow, S. et al. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44, 1102–1113 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kieback, E. et al. Thymus-derived regulatory T cells are positively selected on natural self-antigen through cognate interactions of high functional avidity. Immunity 44, 1114–1126 (2016).

    CAS  PubMed  Google Scholar 

  73. Legoux, F. P. et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 43, 896–908 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire + medullary thymic epithelial cells. Nat. Immunol. 8, 351–358 (2007).

    CAS  PubMed  Google Scholar 

  75. Malhotra, D. et al. Tolerance is established in polyclonal CD4( + ) T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol. 17, 187–195 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. LeGuern, C. & Germana, S. On the elusive TCR specificity of thymic regulatory T cells. Am. J. Transplant. 19, 15–20 (2019).

    CAS  PubMed  Google Scholar 

  77. Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. & Yoshimura, A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 37, 803–811 (2016).

    CAS  PubMed  Google Scholar 

  78. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ezzelarab, M. B. et al. Regulatory T cell infusion can enhance memory T cell and alloantibody responses in lymphodepleted nonhuman primate heart allograft recipients. Am. J. Transplant. 16, 1999–2015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sakaguchi, S., Vignali, D. A., Rudensky, A. Y., Niec, R. E. & Waldmann, H. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13, 461–467 (2013).

    CAS  PubMed  Google Scholar 

  81. Graca, L. et al. Donor-specific transplantation tolerance: the paradoxical behavior of CD4+CD25+ T cells. Proc. Natl Acad. Sci. USA 101, 10122–10126 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sagoo, P. et al. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci. Transl. Med 3, 83ra42 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. Carvalho-Gaspar, M. et al. Location and time-dependent control of rejection by regulatory T cells culminates in a failure to generate memory T cells. J. Immunol. 180, 6640–6648 (2008).

    CAS  PubMed  Google Scholar 

  84. Golshayan, D. et al. In vitro-expanded donor alloantigen-specific CD4+ CD25 + regulatory T cells promote experimental transplantation tolerance. Blood 109, 827–835 (2007).

    CAS  PubMed  Google Scholar 

  85. Joffre, O. et al. Prevention of acute and chronic allograft rejection with CD4 + CD25 + Foxp3 + regulatory T lymphocytes. Nat. Med. 14, 88–92 (2008).

    CAS  PubMed  Google Scholar 

  86. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Moore, C. et al. Alloreactive regulatory T cells generated with retinoic acid prevent skin allograft rejection. Eur. J. Immunol. 45, 452–463 (2015).

    CAS  PubMed  Google Scholar 

  88. Sanchez-Fueyo, A. et al. Specificity of CD4+CD25 + regulatory T cell function in alloimmunity. J. Immunol. 176, 329–334 (2006).

    CAS  PubMed  Google Scholar 

  89. Tsang, J. Y. et al. Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice. J. Clin. Invest. 118, 3619–3628 (2008).

    PubMed  PubMed Central  Google Scholar 

  90. Noyan, F. et al. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am. J. Transplant. 17, 917–930 (2017).

    CAS  PubMed  Google Scholar 

  91. Boardman, D. A. et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am. J. Transplant. 17, 931–943 (2017).

    CAS  PubMed  Google Scholar 

  92. Pierini, A. et al. T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight 2, 92865 (2017).

    PubMed  Google Scholar 

  93. Zhang, Q. et al. Chimeric Antigen Receptor (CAR) Treg: A Promising Approach to Inducing Immunological Tolerance. Front. Immunol. 9, 2359 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Veerapathran, A., Pidala, J., Beato, F., Yu, X. Z. & Anasetti, C. Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly. Blood 118, 5671–5680 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tang, Q. & Vincenti, F. Transplant trials with Tregs: perils and promises. J. Clin. Invest. 127, 2505–2512 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Young, J. S., Yin, D., Vannier, A. G. L., Alegre, M. L. & Chong, A. S. Equal expansion of endogenous transplant-specific regulatory T cell and recruitment into the allograft during rejection and tolerance. Front. Immunol. 9, 1385 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Tang, Q. & Lee, K. Regulatory T-cell therapy for transplantation: how many cells do we need? Curr. Opin. Organ Transplant. 17, 349–354 (2012).

    CAS  PubMed  Google Scholar 

  98. Hansen, W. et al. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J. Exp. Med. 209, 2001–2016 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Delgoffe, G. M. et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501, 252–256 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Glinka, Y. & Prud’homme, G. J. Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J. Leukoc. Biol. 84, 302–310 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bono, M. R., Fernandez, D., Flores-Santibanez, F., Rosemblatt, M. & Sauma, D. CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS Lett. 589, 3454–3460 (2015).

    CAS  PubMed  Google Scholar 

  102. Jin, D. et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 70, 2245–2255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Stolp, J., Turka, L. A. & Wood, K. J. B cells with immune-regulating function in transplantation. Nat. Rev. Nephrol. 10, 389–397 (2014).

    CAS  PubMed  Google Scholar 

  104. Fillatreau, S. Regulatory plasma cells. Curr. Opin. Pharmacol. 23, 1–5 (2015).

    CAS  PubMed  Google Scholar 

  105. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lino, A. C. et al. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells. Immunity 49, 120–133 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Xiao, S., Brooks, C. R., Sobel, R. A. & Kuchroo, V. K. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. J. Immunol. 194, 1602–1608 (2015).

    CAS  PubMed  Google Scholar 

  108. Yeung, M. Y. et al. TIM-1 signaling is required for maintenance and induction of regulatory B cells. Am. J. Transplant. 15, 942–953 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Chihara, N. et al. Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature 558, 454–459 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yan, Y. et al. Postoperative administration of donor B cells induces rat kidney allograft acceptance: lack of association with Th2 cytokine expression in long-term accepted grafts. Transplantation 73, 1123–1130 (2002).

    CAS  PubMed  Google Scholar 

  111. Fehr, T. et al. Alloreactive CD8 T cell tolerance requires recipient B cells, dendritic cells, and MHC class II. J. Immunol. 181, 165–173 (2008).

    CAS  PubMed  Google Scholar 

  112. Deng, S. et al. Cutting edge: transplant tolerance induced by anti-CD45RB requires B lymphocytes. J. Immunol. 178, 6028–6032 (2007).

    CAS  PubMed  Google Scholar 

  113. Ding, Q. et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest. 121, 3645–3656 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, K. M. et al. Anti-CD45RB/anti-TIM-1-induced tolerance requires regulatory B cells. Am. J. Transplant. 12, 2072–2078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sun, J. et al. Transcriptomics identify CD9 as a marker of murine IL-10-competent regulatory B cells. Cell Rep. 13, 1110–1117 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Clatworthy, M. R. et al. B-cell-depleting induction therapy and acute cellular rejection. N. Engl. J. Med. 360, 2683–2685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Pallier, A. et al. Patients with drug-free long-term graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype. Kidney Int. 78, 503–513 (2010).

    CAS  PubMed  Google Scholar 

  118. Sagoo, P. et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Invest. 120, 1848–1861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Newell, K. A. et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Invest. 120, 1836–1847 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nova-Lamperti, E. et al. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4 + T-cell responses. Sci. Rep. 6, 20044 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chesneau, M. et al. Tolerant kidney transplant patients produce B Cells with regulatory properties. J. Am. Soc. Nephrol. 26, 2588–2598 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rebollo-Mesa, I. et al. Biomarkers of tolerance in kidney transplantation: are we predicting tolerance or response to immunosuppressive treatment? Am. J. Transplant. 16, 3443–3457 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bottomley, M. J., Chen, M., Fuggle, S., Harden, P. N. & Wood, K. J. Application of operational tolerance signatures are limited by variability and type of immunosuppression in renal transplant recipients: a Cross-Sectional Study. Transplant. Direct 3, e125 (2017).

    PubMed  Google Scholar 

  124. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    CAS  PubMed  Google Scholar 

  125. Thommen, D. S. & Schumacher, T. N. T Cell Dysfunction in Cancer. Cancer Cell 33, 547–562 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318 (2018).

    CAS  PubMed  Google Scholar 

  127. Wang, C., Singer, M. & Anderson, A. C. Molecular Dissection of CD8(+) T-Cell Dysfunction. Trends Immunol. 38, 567–576 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Oxenius, A., Zinkernagel, R. M. & Hengartner, H. Comparison of activation versus induction of unresponsiveness of virus-specific CD4+ and CD8+ T cells upon acute versus persistent viral infection. Immunity 9, 449–457 (1998).

    CAS  PubMed  Google Scholar 

  129. Ciurea, A., Hunziker, L., Klenerman, P., Hengartner, H. & Zinkernagel, R. M. Impairment of CD4(+) T cell responses during chronic virus infection prevents neutralizing antibody responses against virus escape mutants. J. Exp. Med. 193, 297–305 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Fuller, M. J. & Zajac, A. J. Ablation of CD8 and CD4 T cell responses by high viral loads. J. Immunol. 170, 477–486 (2003).

    CAS  PubMed  Google Scholar 

  131. Brooks, D. G., Teyton, L., Oldstone, M. B. & McGavern, D. B. Intrinsic functional dysregulation of CD4 T cells occurs rapidly following persistent viral infection. J. Virol. 79, 10514–10527 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Crawford, A. et al. Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity 40, 289–302 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ejrnaes, M. et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med. 203, 2461–2472 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Elsaesser, H., Sauer, K. & Brooks, D. G. IL-21 is required to control chronic viral infection. Science 324, 1569–1572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Quezada, S. A., Jarvinen, L. Z., Lind, E. F. & Noelle, R. J. CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. 22, 307–328 (2004).

    CAS  PubMed  Google Scholar 

  136. Baas, M. et al. TGFbeta-dependent expression of PD-1 and PD-L1 controls CD8(+) T cell anergy in transplant tolerance. eLife 5, e08133 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Besancon, A. et al. The induction and maintenance of transplant tolerance engages both regulatory and anergic CD4(+) T cells. Front. Immunol. 8, 218 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Quezada, S. A. et al. Mechanisms of donor-specific transfusion tolerance: preemptive induction of clonal T-cell exhaustion via indirect presentation. Blood 102, 1920–1926 (2003).

    CAS  PubMed  Google Scholar 

  139. Chai, J. G. et al. Allospecific CD4(+) T cells retain effector function and are actively regulated by Treg cells in the context of transplantation tolerance. Eur. J. Immunol. 45, 2017–2027 (2015).

    CAS  PubMed  Google Scholar 

  140. Ferrer, I. R. et al. Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. Proc. Natl. Acad. Sci. USA 108, 20701–20706 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jiang, X. et al. Cardiac allograft acceptance induced by blockade of CD40-CD40L costimulation is dependent on CD4+ CD25+ regulatory T cells. Surgery 149, 336–346 (2011).

    PubMed  Google Scholar 

  142. Wu, J. et al. Ablation of Transcription Factor IRF4 Promotes Transplant Acceptance by Driving Allogenic CD4(+) T Cell Dysfunction. Immunity 47, 1114–1128 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Miller, M. L. et al. Tracking of TCR-transgenic T cells reveals that multiple mechanisms maintain cardiac transplant tolerance in mice. Am. J. Transplant. 16, 2854–2864 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Man, K. et al. Transcription factor IRF4 promotes CD8(+) T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141 (2017).

    CAS  PubMed  Google Scholar 

  145. Zhang, H. et al. Ablation of interferon regulatory factor 4 in T cells induces “memory” of transplant tolerance that is irreversible by immune checkpoint blockade. Am. J. Transplant. 3, 1–10 (2018).

    Google Scholar 

  146. Sarraj, B. et al. Impaired selectin-dependent leukocyte recruitment induces T-cell exhaustion and prevents chronic allograft vasculopathy and rejection. Proc. Natl Acad. Sci. USA 111, 12145–12150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kalekar, L. A. et al. CD4(+) T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol. 17, 304–314 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. He, R. et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature 537, 412–428 (2016).

    CAS  PubMed  Google Scholar 

  151. Im, S. J. et al. Defining CD8+T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Jayachandran, R. et al. Disruption of Coronin 1 signaling in T cells promotes allograft tolerance while maintaining anti-pathogen immunity. Immunity 50, 152–165 (2019).

    CAS  PubMed  Google Scholar 

  155. Yang, J. et al. Allograft rejection mediated by memory T cells is resistant to regulation. Proc. Natl Acad. Sci. USA 104, 19954–19959 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Luisa Alegre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P.K., McIntosh, C.M., Chong, A.S. et al. The pursuit of transplantation tolerance: new mechanistic insights. Cell Mol Immunol 16, 324–333 (2019). https://doi.org/10.1038/s41423-019-0203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0203-7

Keywords

This article is cited by

Search

Quick links