Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD70 defines a subset of proinflammatory and CNS-pathogenic TH1/TH17 lymphocytes and is overexpressed in multiple sclerosis

Abstract

CD70 is the unique ligand of CD27 and is expressed on immune cells only upon activation. Therefore, engagement of the costimulatory CD27/CD70 pathway is solely dependent on upregulation of CD70. However, the T cell-intrinsic effect and function of human CD70 remain underexplored. Herein, we describe that CD70 expression distinguishes proinflammatory CD4+ T lymphocytes that display an increased potential to migrate into the central nervous system (CNS). Upregulation of CD70 on CD4+ T lymphocytes is induced by TGF-β1 and TGF-β3, which promote a pathogenic phenotype. In addition, CD70 is associated with a TH1 and TH17 profile of lymphocytes and is important for T-bet and IFN-γ expression by both T helper subtypes. Moreover, adoptive transfer of CD70−/−CD4+ T lymphocytes induced less severe experimental autoimmune encephalomyelitis (EAE) disease than transfer of WT CD4+ T lymphocytes. CD70+CD4+ T lymphocytes are found in the CNS during acute autoimmune inflammation in humans and mice, highlighting CD70 as both an immune marker and an important costimulator of highly pathogenic proinflammatory TH1/TH17 lymphocytes infiltrating the CNS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hintzen, R. Q. et al. CD70 represents the human ligand for CD27. Int. Immunol. 6, 477–480 (1994).

    Article  CAS  Google Scholar 

  2. Hintzen, R. Q. et al. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J. Immunol. 154, 2612–2623 (1995).

    CAS  PubMed  Google Scholar 

  3. Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 9, 271–285 (2009).

    Article  CAS  Google Scholar 

  4. Soares, H. et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med. 204, 1095–1106 (2007).

    Article  CAS  Google Scholar 

  5. van Oosterwijk, M. F. et al. CD27-CD70 interactions sensitise naive CD4+ T cells for IL-12-induced Th1 cell development. Int. Immunol. 19, 713–718 (2007).

    Article  Google Scholar 

  6. Atarashi, K. et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  Google Scholar 

  7. Nakajima, A. et al. Involvement of CD70-CD27 interactions in the induction of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 109, 188–196 (2000).

    Article  CAS  Google Scholar 

  8. Francosalinas, G. et al. Enhanced costimulation by CD70+ B cells aggravates experimental autoimmune encephalomyelitis in autoimmune mice. J. Neuroimmunol. 255, 8–17 (2013).

    Article  CAS  Google Scholar 

  9. Han, B. K. et al. Increased prevalence of activated CD70+CD4+ T cells in the periphery of patients with systemic lupus erythematosus. Lupus 14, 598–606 (2005).

    Article  CAS  Google Scholar 

  10. Park, J. K. et al. CD70-expressing CD4 T cells produce IFN-gamma and IL-17 in rheumatoid arthritis. Rheumatology 53, 1896–1900 (2014).

    Article  CAS  Google Scholar 

  11. Coquet, J. M. et al. The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity 38, 53–65 (2013).

    Article  CAS  Google Scholar 

  12. Libregts, S., van Olffen, R. W., van der Sluijs, K. F., van Lier, R. A. & Nolte, M. A. Function of CD27 in helper T cell differentiation. Immunol. Lett. 136, 177–186 (2011).

    Article  CAS  Google Scholar 

  13. Wang, X. & Dong, C. The CD70-CD27 axis, a new brake in the T helper 17 cell response. Immunity 38, 1–3 (2013).

    Article  Google Scholar 

  14. Codarri, L. et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    Article  CAS  Google Scholar 

  15. Ifergan, I. et al. The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131, 785–799 (2008).

    Article  Google Scholar 

  16. Cao, Y. et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl. Med. 7, 287ra74 (2015).

    Article  Google Scholar 

  17. Peters, A. et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35, 986–996 (2011).

    Article  CAS  Google Scholar 

  18. Lai, W. C. Y., Zhou, J., Chen, S., Qin, C. & Yang, C. Deficiency of the G protein Gαq ameliorates experimental autoimmune encephalomyelitis with impaired DC-derived IL-6 production and Th17 differentiation. Cell. Mol. Immunol. 14, 557–567 (2017).

    Article  CAS  Google Scholar 

  19. Alvarez, J. I., Cayrol, R. & Prat, A. Disruption of central nervous system barriers in multiple sclerosis. Biochim. Biophys. Acta 1812, 252–264 (2011).

    Article  CAS  Google Scholar 

  20. Larochelle, C. et al. Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135, 2906–2924 (2012).

    Article  Google Scholar 

  21. Larochelle, C. et al. Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation. Ann. Neurol. 78, 39–53 (2015).

    Article  CAS  Google Scholar 

  22. Schlager, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    Article  Google Scholar 

  23. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  24. Wacleche, V. S. et al. New insights into the heterogeneity of Th17 subsets contributing to HIV-1 persistence during antiretroviral therapy. Retrovirology 13, 59 (2016).

    Article  Google Scholar 

  25. Ifergan, I. et al. Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on alpha4 integrin. Brain 134, 3560–3577 (2011).

    Article  Google Scholar 

  26. Yang, Z. Z. et al. TGF-beta upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin's lymphoma. Leukemia 28, 1872–1884 (2014).

    Article  CAS  Google Scholar 

  27. Lee, P. W., Yang, Y., Racke, M. K. & Lovett-Racke, A. E. Analysis of TGF-beta1 and TGF-beta3 as regulators of encephalitogenic Th17 cells: implications for multiple sclerosis. Brain Behav. Immun. 46, 44–49 (2015).

    Article  CAS  Google Scholar 

  28. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    Article  CAS  Google Scholar 

  29. Kebir, H. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    Article  CAS  Google Scholar 

  30. Bettelli, E., Korn, T., Oukka, M. & Kuchroo, V. K. Induction and effector functions of T(H)17 cells. Nature 453, 1051–1057 (2008).

    Article  CAS  Google Scholar 

  31. Yang, L. et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454, 350–352 (2008).

    Article  CAS  Google Scholar 

  32. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448, 484–487 (2007).

    Article  CAS  Google Scholar 

  33. Kebir, H. et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 66, 390–402 (2009).

    Article  CAS  Google Scholar 

  34. Tzartos, J. S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).

    Article  CAS  Google Scholar 

  35. Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    Article  CAS  Google Scholar 

  36. Pollinger, B. et al. Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J. Exp. Med. 206, 1303–1316 (2009).

    Article  Google Scholar 

  37. Dhainaut, M. et al. Thymus-derived regulatory T cells restrain pro-inflammatory Th1 responses by downregulating CD70 on dendritic cells. EMBO J. 34, 1336–1348 (2015).

    Article  CAS  Google Scholar 

  38. Pen, J. J. et al. Modulation of regulatory T cell function by monocyte-derived dendritic cells matured through electroporation with mRNA encoding CD40 ligand, constitutively active TLR4, and CD70. J. Immunol. 191, 1976–1983 (2013).

    Article  CAS  Google Scholar 

  39. Kawamura, T. et al. CD70 is selectively expressed on Th1 but not on Th2 cells and is required for Th1-type immune responses. J. Invest. Dermatol. 131, 1252–1261 (2011).

    Article  CAS  Google Scholar 

  40. O'Neill, R. E. et al. T cell-derived CD70 delivers an immune checkpoint function in inflammatory T cell responses. J. Immunol. 199, 3700–3710 (2017).

    Article  CAS  Google Scholar 

  41. Lee, P. W., Severin, M. E. & Lovett-Racke, A. E. TGF-beta regulation of encephalitogenic and regulatory T cells in multiple sclerosis. Eur. J. Immunol. 47, 446–453 (2017).

    Article  CAS  Google Scholar 

  42. Huss, D. J. et al. TGF-beta enhances effector Th1 cell activation but promotes self-regulation via IL-10. J. Immunol. 184, 5628–5636 (2010).

    Article  CAS  Google Scholar 

  43. Healy, L. M. et al. MerTK-mediated regulation of myelin phagocytosis by macrophages generated from patients with MS. Neurol. Neuroimmunol. Neuroinflamm. 4, e402 (2017).

    Article  Google Scholar 

  44. Iwamoto, S. et al. TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J. Immunol. 179, 1449–1457 (2007).

    Article  CAS  Google Scholar 

  45. Pratt, B. M. & McPherson, J. M. TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev. 8, 267–292 (1997).

    Article  CAS  Google Scholar 

  46. Wajant, H. Therapeutic targeting of CD70 and CD27. Expert Opin. Ther. Targets 20, 959–973 (2016).

    Article  CAS  Google Scholar 

  47. Miller, J. et al. Soluble CD70: a novel immunotherapeutic agent for experimental glioblastoma. J. Neurosurg. 113, 280–285 (2010).

    Article  CAS  Google Scholar 

  48. Wyzgol, A. et al. Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J. Immunol. 183, 1851–1861 (2009).

    Article  CAS  Google Scholar 

  49. Komori, M. et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis. Ann. Neurol. 78, 3–20 (2015).

    Article  CAS  Google Scholar 

  50. Schulze-Topphoff, U. et al. Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nat. Med. 15, 788–793 (2009).

    Article  CAS  Google Scholar 

  51. Herz, J. et al. In vivo imaging of lymphocytes in the CNS reveals different behaviour of naive T cells in health and autoimmunity. J. Neuroinflamm. 8, 131 (2011).

    Article  CAS  Google Scholar 

  52. Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).

    Article  Google Scholar 

  53. Alvarez, J. I. et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334, 1727–1731 (2011).

    Article  CAS  Google Scholar 

  54. Cayrol, R. et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat. Immunol. 9, 137–145 (2008).

    Article  CAS  Google Scholar 

  55. Alvarez, J. I. et al. Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol. Dis. 74, 14–24 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.D. holds a fellowship from the Fonds de Recherche du Québec-Santé (FRQS). L.T. holds scholarships from Université de Montréal and CRCHUM. E.P. holds a fellowship from the Multiple Sclerosis Society of Canada (MSSC) and the FRQS. S.Z. is supported by a fellowship from Biogen Canada. C.L. is supported by FRQS. A.P. holds the T1 (senior) Canada Research Chair in Multiple Sclerosis. This work was funded by operating grants from the Canadian Institutes of Health Research (MOP 89885, PJI-153195) and from the MSSC (EGID 2382). We thank Jannie Borst for providing us with the CD70−/− mice. We thank Hartmut Wekerle for providing us with the TCR1640 mice. Special thanks to Magdalena Paterka and Volker Siffrin for providing the protocol for CD4+ adoptive T cell transfer in RAG null mice. We would also like to thank the imaging platform, the pathology platform, and the flow cytometry platform from the CRCHUM for the excellent technical support and Alice M Roy and Elvia Gonzalez for their excellent technical animal support.

Author information

Authors and Affiliations

Authors

Contributions

T.D. and A.P. conceived, designed, and supervised the research, analyzed the data and wrote the paper. T.D., L.T., L.B., S.Z., E.P., C.L. and C.G. performed the experiments. X.A. and R.M.R. provided clinical information. J.P., B.L., P.D., M.G., R.M., A.P., C.L., and A.B. secured human blood, CSF, and brain samples. C.L., E.P., and S.Z. provided key scientific input.

Corresponding author

Correspondence to Alexandre Prat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaeze, T., Tremblay, L., Lachance, C. et al. CD70 defines a subset of proinflammatory and CNS-pathogenic TH1/TH17 lymphocytes and is overexpressed in multiple sclerosis. Cell Mol Immunol 16, 652–665 (2019). https://doi.org/10.1038/s41423-018-0198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0198-5

Keywords

This article is cited by

Search

Quick links