Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intracellular HSP70L1 inhibits human dendritic cell maturation by promoting suppressive H3K27me3 and H2AK119Ub1 histone modifications

Abstract

Epigenetic regulation has been attracting increasing attention due to its role in cell differentiation and behaviors. However, the epigenetic mechanisms that regulate human dendritic cell (DC) differentiation and development remain poorly understood. Our previous studies show that extracellular heat shock protein 70-like protein (HSP70L1) is a potent adjuvant of Th1 responses via stimulating DCs when released from cells; however, the role of intracellular HSP70L1 in DC differentiation and maturation remains unknown. Herein, we demonstrate that intracellular HSP70L1 inhibits human DC maturation by suppressing MHC and costimulatory molecule expression, in contrast to the adjuvant activity of extracellular HSP70L1. The stability of intracellular HSP70L1 is dependent on DNAJC2, a known epigenetic regulator. Mechanistically, intracellular HSP70L1 inhibits the recruitment of Ash1l to and maintains the repressive H3K27me3 and H2AK119Ub1 modifications on the promoter regions of costimulatory, MHC and STAT3 genes. Thus, intracellular HSP70L1 is an inhibitor of human DC maturation. Our results provide new insights into the epigenetic regulation of cell development by intracellular HSP70L1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hammer, G. E. & Ma, A. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu. Rev. Immunol. 31, 743–791 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Worbs, T., Hammerschmidt, S. I. & Forster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 17, 30–48 (2017).

    CAS  PubMed  Google Scholar 

  3. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    CAS  PubMed  Google Scholar 

  4. Mildner, A. & Jung, S. Development and function of dendritic cell subsets. Immunity 40, 642–656 (2014).

    CAS  PubMed  Google Scholar 

  5. Pearce, E. J. & Everts, B. Dendritic cell metabolism. Nat. Rev. Immunol. 15, 18–29 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Murphy, T. L. et al. Transcriptional control of dendritic cell development. Annu. Rev. Immunol. 34, 93–119 (2016).

    CAS  PubMed  Google Scholar 

  7. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Alvarez-Errico, D., Vento-Tormo, R., Sieweke, M. & Ballestar, E. Epigenetic control of myeloid cell differentiation, identity and function. Nat. Rev. Immunol. 15, 7–17 (2015).

    CAS  PubMed  Google Scholar 

  9. Sathaliyawala, T. et al. Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity 33, 597–606 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kampgen, E. et al. Understanding the dendritic cell lineage through a study of cytokine receptors. J. Exp. Med. 179, 1767–1776 (1994).

    CAS  PubMed  Google Scholar 

  13. Croxford, A. L. et al. The Cytokine GM-CSF drives the inflammatory signature of CCR2+monocytes and licenses autoimmunity. Immunity 43, 502–514 (2015).

    CAS  PubMed  Google Scholar 

  14. Sander, J. et al. Cellular differentiation of human monocytes is regulated by time-dependent interleukin-4 signaling and the transcriptional regulator NCOR2. Immunity 47, 1051–1066 e1012 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Monticelli, S. & Natoli, G. Transcriptional determination and functional specificity of myeloid cells: making sense of diversity. Nat. Rev. Immunol. 17, 595–607 (2017).

    CAS  PubMed  Google Scholar 

  16. Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).

    CAS  PubMed  Google Scholar 

  17. Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136, 1122–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lauberth, S. M. et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152, 1021–1036 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia, M. et al. Histone methyltransferase Ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity 39, 470–481 (2013).

    CAS  PubMed  Google Scholar 

  20. Ortega-Molina, A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med. 21, 1199–1208 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia, M. et al. Ash1l and lnc-Smad3 coordinate Smad3 locus accessibility to modulate iTreg polarization and T cell autoimmunity. Nat. Commun. 8, 15818 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Van der Meulen, J. et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood 125, 13–21 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Holla, S. et al. MUSASHI-mediated expression of JMJD3, a H3K27me3 demethylase, is involved in foamy macrophage generation during mycobacterial infection. PLoS Pathog. 12, e1005814 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Russ, B. E. et al. Regulation of H3K4me3 at transcriptional enhancers characterizes acquisition of virus-specific CD8(+) T cell-lineage-specific function. Cell Rep. 21, 3624–3636 (2017).

    CAS  PubMed  Google Scholar 

  25. Lin, Q. et al. Epigenetic program and transcription factor circuitry of dendritic cell development. Nucleic Acids Res. 43, 9680–9693 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Moran, T. P., Nakano, H., Kondilis-Mangum, H. D., Wade, P. A. & Cook, D. N. Epigenetic control of Ccr7 expression in distinct lineages of lung dendritic cells. J. Immunol. 193, 4904–4913 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu, H. B. et al. NFATc2 mediates epigenetic modification of dendritic cell cytokine and chemokine responses to dectin-1 stimulation. Nucleic Acids Res. 43, 836–847 (2015).

    CAS  PubMed  Google Scholar 

  28. Liu, X. et al. Sca1(+)Lin(-)CD117(-) mouse bone marrow-derived mesenchymal stem cells regulate immature dendritic cell maturation by inhibiting TLR4-IRF8 signaling via the notch-RBP-J pathway. Stem Cells Dev. 27, 556–565 (2018).

    CAS  PubMed  Google Scholar 

  29. Wan, T. et al. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 103, 1747–1754 (2004).

    CAS  PubMed  Google Scholar 

  30. Jaiswal, H. et al. The chaperone network connected to human ribosome-associated complex. Mol. Cell. Biol. 31, 1160–1173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hundley, H. A., Walter, W., Bairstow, S. & Craig, E. A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032–1034 (2005).

    CAS  PubMed  Google Scholar 

  32. Otto, H. et al. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl Acad. Sci. USA 102, 10064–10069 (2005).

    CAS  PubMed  Google Scholar 

  33. Weyer, F. A., Gumiero, A., Gese, G. V., Lapouge, K. & Sinning, I. Structural insights into a unique Hsp70-Hsp40 interaction in the eukaryotic ribosome-associated complex. Nat. Struct. Mol. Biol. 24, 144–151 (2017).

    CAS  PubMed  Google Scholar 

  34. Ribeiro, J. D. et al. ZRF1 controls oncogene-induced senescence through the INK4-ARF locus. Oncogene 32, 2161–2168 (2013).

    CAS  PubMed  Google Scholar 

  35. Aloia, L. et al. Zrf1 is required to establish and maintain neural progenitor identity. Genes Dev. 28, 182–197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Demajo, S. et al. ZRF1 controls the retinoic acid pathway and regulates leukemogenic potential in acute myeloid leukemia. Oncogene 33, 5501–5510 (2014).

    CAS  PubMed  Google Scholar 

  37. Aloia, L., Demajo, S. & Di Croce, L. ZRF1: a novel epigenetic regulator of stem cell identity and cancer. Cell Cycle 14, 510–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Barilari, M. et al. ZRF1 is a novel S6 kinase substrate that drives the senescence programme. EMBO J. 36, 736–750 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chitale, S. & Richly, H. DICER and ZRF1 contribute to chromatin decondensation during nucleotide excision repair. Nucleic Acids Res. 45, 5901–5912 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, Y. et al. Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+CTL response by dendritic cell vaccine. Cancer Res. 65, 4947–4954 (2005).

    CAS  PubMed  Google Scholar 

  41. Fang, H. et al. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J. Biol. Chem. 286, 30393–30400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu, Q. et al. Efficient induction of a Her2-specific anti-tumor response by dendritic cells pulsed with a Hsp70L1-Her2(341-456) fusion protein. Cell. Mol. Immunol. 8, 424–432 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, S. et al. HSP70L1-mediated intracellular priming of dendritic cell vaccination induces more potent CTL response against cancer. Cell. Mol. Immunol. 15, 135–145 (2018).

    CAS  PubMed  Google Scholar 

  44. Han, Y. et al. Tumor-induced generation of splenic erythroblast-like Ter-cells promotes tumor progression. Cell 173, 634–648 e612 (2018).

    CAS  PubMed  Google Scholar 

  45. Chen, K. et al. Methyltransferase SETD2-mediated methylation of STAT1 is critical for interferon antiviral activity. Cell 170, 492–506 e414 (2017).

    CAS  PubMed  Google Scholar 

  46. Zhang, Q. et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525, 389–393 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Balbo Pogliano, C. et al. ASH1L histone methyltransferase regulates the handoff between damage recognition factors in global-genome nucleotide excision repair. Nat. Commun. 8, 1333 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Eram, M. S. et al. Kinetic characterization of human histone H3 lysine 36 methyltransferases, ASH1L and SETD2. Biochim. Biophys. Acta 1850, 1842–1848 (2015).

    CAS  PubMed  Google Scholar 

  49. Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat. Cell Biol. 12, 618–624 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tavares, L. et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, B. et al. Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. J. Biol. Chem. 284, 7970–7976 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cabianca, D. S. et al. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149, 819–831 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Miyazaki, H. et al. Ash1l methylates Lys36 of histone H3 independently of transcriptional elongation to counteract polycomb silencing. PLoS Genet. 9, e1003897 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  55. Kinkley, S. et al. reChIP-seq reveals widespread bivalency of H3K4me3 and H3K27me3 in CD4(+) memory T cells. Nat. Commun. 7, 12514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yanfeng Li for the technical assistance. This work was supported by grants from the National Key R&D Program of China (2018YFA0507401) and the National Natural Science Foundation of China (31670875 and 31470858).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuetao Cao or Shuxun Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L., Li, Z., Hu, T. et al. Intracellular HSP70L1 inhibits human dendritic cell maturation by promoting suppressive H3K27me3 and H2AK119Ub1 histone modifications. Cell Mol Immunol 17, 85–94 (2020). https://doi.org/10.1038/s41423-018-0195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0195-8

Keywords

This article is cited by

Search

Quick links