Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sin1/mTORC2 regulate B cell growth and metabolism by activating mTORC1 and Myc

Abstract

Proper control of B cell growth and metabolism is crucial for B-cell-mediated immunity, but the underlying molecular mechanisms remain incompletely understood. In this study, Sin1, a key component of mTOR complex 2 (mTORC2), specifically regulates B cell growth and metabolism. Genetic ablation of Sin1 in B cells reduces the cell size at either the transitional stage or upon antigen stimulation and severely impairs metabolism. Sin1 deficiency also severely impairs B-cell proliferation, antibody responses, and anti-viral immunity. At the molecular level, Sin1 controls the expression and stability of the c-Myc protein and maintains the activity of mTORC1 through the Akt-dependent inactivation of GSK3 and TSC1/2, respectively. Therefore, our study reveals a novel and specific role for Sin1 in coordinating the activation of mTORC2 and mTORC1 to control B cell growth and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jellusova, J. & Rickert, R. C. The PI3K pathway in B cell metabolism. Crit. Rev. Biochem. Mol. Biol. 51, 359–378 (2016).

    Article  CAS  Google Scholar 

  2. Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).

    Article  CAS  Google Scholar 

  3. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  Google Scholar 

  4. Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117, 787–800 (2004).

    Article  CAS  Google Scholar 

  5. Avalos, A. M., Meyer-Wentrup, F. & Ploegh, H. L. B-cell receptor signaling in lymphoid malignancies and autoimmunity. Adv. Immunol. 123, 1–49 (2014).

    Article  CAS  Google Scholar 

  6. Khalil, A. M., Cambier, J. C. & Shlomchik, M. J. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336, 1178–1181 (2012).

    Article  CAS  Google Scholar 

  7. Patke, A., Mecklenbrauker, I., Erdjument-Bromage, H., Tempst, P. & Tarakhovsky, A. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J. Exp. Med. 203, 2551–2562 (2006).

    Article  CAS  Google Scholar 

  8. Konigsberger, S. & Kiefer, F. The BAFFling function of Syk in B-cell homeostasis. EMBO J. 34, 838–840 (2015).

    Article  Google Scholar 

  9. Guo, B., Su, T. T. & Rawlings, D. J. Protein kinase C family functions in B-cell activation. Curr. Opin. Immunol. 16, 367–373 (2004).

    Article  CAS  Google Scholar 

  10. Rawlings, D. J., Schwartz, M. A., Jackson, S. W. & Meyer-Bahlburg, A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol. 12, 282–294 (2012).

    Article  CAS  Google Scholar 

  11. Tsui, C. et al. Protein kinase C-beta dictates b cell fate by regulating mitochondrial remodeling, metabolic reprogramming, and heme biosynthesis. Immunity 48, 1144–1159 e1145 (2018).

    Article  CAS  Google Scholar 

  12. Su, B. & Jacinto, E. Mammalian TOR signaling to the AGC kinases. Crit. Rev. Biochem. Mol. Biol. 46, 527–547 (2011).

    Article  CAS  Google Scholar 

  13. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  Google Scholar 

  14. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  Google Scholar 

  15. Cornu, M., Albert, V. & Hall, M. N. mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23, 53–62 (2013).

    Article  CAS  Google Scholar 

  16. Wicker, L. S. et al. Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur. J. Immunol. 20, 2277–2283 (1990).

    Article  CAS  Google Scholar 

  17. Aagaard-Tillery, K. M. & Jelinek, D. F. Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin. Cell. Immunol. 156, 493–507 (1994).

    Article  CAS  Google Scholar 

  18. Ersching, J. et al. Germinal Center Selection and Affinity Maturation Require Dynamic Regulation of mTORC1 Kinase. Immunity 46, 1045–1058 e1046 (2017).

    Article  CAS  Google Scholar 

  19. Yang, J. et al. Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. Elife 5, e17936 (2016).

  20. Zeng, H. et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45, 540–554 (2016).

    Article  CAS  Google Scholar 

  21. Zhang, S. et al. B cell-specific deficiencies in mTOR limit humoral immune responses. J. Immunol. 191, 1692–1703 (2013).

    Article  CAS  Google Scholar 

  22. Luo, W., Weisel, F. & Shlomchik, M. J. B. Cell receptor and CD40 signaling are rewired for synergistic induction of the c-Myc transcription factor in germinal center B cells. Immunity 48, 313–326 e315 (2018).

    Article  CAS  Google Scholar 

  23. Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007).

    Article  CAS  Google Scholar 

  24. Jacinto, E. et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125–137 (2006).

    Article  CAS  Google Scholar 

  25. Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Article  CAS  Google Scholar 

  26. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128 (2004).

    Article  CAS  Google Scholar 

  27. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    Article  CAS  Google Scholar 

  28. Facchinetti, V. et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 27, 1932–1943 (2008).

    Article  CAS  Google Scholar 

  29. Ikenoue, T., Inoki, K., Yang, Q., Zhou, X. & Guan, K. L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 27, 1919–1931 (2008).

    Article  CAS  Google Scholar 

  30. Chen, X. et al. Cryo-EM structure of human mTOR complex 2. Cell Res. 28, 518–528 (2018).

    Article  CAS  Google Scholar 

  31. Lazorchak, A. S. et al. Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol. Cell 39, 433–443 (2010).

    Article  CAS  Google Scholar 

  32. Lee, K. et al. Requirement for Rictor in homeostasis and function of mature B lymphoid cells. Blood 122, 2369–2379 (2013).

    Article  CAS  Google Scholar 

  33. Limon, J. J. et al. mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition. Proc. Natl Acad. Sci. USA 111, E5076–E5085 (2014).

    Article  CAS  Google Scholar 

  34. Holl, T. M., Haynes, B. F. & Kelsoe, G. Stromal cell independent B cell development in vitro: generation and recovery of autoreactive clones. J. Immunol. Methods 354, 53–67 (2010).

    Article  CAS  Google Scholar 

  35. Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101 (1994).

    Article  CAS  Google Scholar 

  36. Rickert, R. C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  Google Scholar 

  37. Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).

    Article  CAS  Google Scholar 

  38. Yang, G., Murashige, D. S., Humphrey, S. J. & James, D. E. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation. Cell Rep. 12, 937–943 (2015).

    Article  CAS  Google Scholar 

  39. van Riggelen, J., Yetil, A. & Felsher, D. W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10, 301–309 (2010).

    Article  Google Scholar 

  40. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  CAS  Google Scholar 

  41. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  Google Scholar 

  42. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  Google Scholar 

  43. Sears, R. C. The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3, 1133–1137 (2004).

    Article  CAS  Google Scholar 

  44. He, B. et al. Intranasal application of polyethyleneimine suppresses influenza virus infection in mice. Emerg. Microbes Infect. 5, e41 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Donahue, A. C. & Fruman, D. A. Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli. Eur. J. Immunol. 37, 2923–2936 (2007).

    Article  CAS  Google Scholar 

  46. Chang, X., Lazorchak, A. S., Liu, D. & Su, B. Sin1 regulates Treg-cell development but is not required for T-cell growth and proliferation. Eur. J. Immunol. 42, 1639–1647 (2012).

    Article  CAS  Google Scholar 

  47. Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743–753 (2010).

    Article  CAS  Google Scholar 

  48. Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16, 1865–1870 (2006).

    Article  CAS  Google Scholar 

  49. Chung, J. B., Silverman, M. & Monroe, J. G. Transitional B cells: step by step towards immune competence. Trends Immunol. 24, 343–349 (2003).

    Article  CAS  Google Scholar 

  50. Doughty, C. A. et al. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107, 4458–4465 (2006).

    Article  CAS  Google Scholar 

  51. Betz, C. et al. Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl Acad. Sci. USA 110, 12526–12534 (2013).

    Article  CAS  Google Scholar 

  52. Jellusova, J. et al. Gsk3 is a metabolic checkpoint regulator in B cells. Nat. Immunol. 18, 303–312 (2017).

    Article  CAS  Google Scholar 

  53. Latronico, M. V., Costinean, S., Lavitrano, M. L., Peschle, C. & Condorelli, G. Regulation of cell size and contractile function by AKT in cardiomyocytes. Ann. N. Y. Acad. Sci. 1015, 250–260 (2004).

    Article  CAS  Google Scholar 

  54. Faridi, J., Fawcett, J., Wang, L. & Roth, R. A. Akt promotes increased mammalian cell size by stimulating protein synthesis and inhibiting protein degradation. Am. J. Physiol. Endocrinol. Metab. 285, E964–E972 (2003).

    Article  CAS  Google Scholar 

  55. Zhang, F., Lazorchak, A. S., Liu, D., Chen, F. & Su, B. Inhibition of the mTORC2 and chaperone pathways to treat leukemia. Blood 119, 6080–6088 (2012).

    Article  CAS  Google Scholar 

  56. Wu, Y. T. et al. mTOR complex 2 targets Akt for proteasomal degradation via phosphorylation at the hydrophobic motif. J. Biol. Chem. 286, 14190–14198 (2011).

    Article  CAS  Google Scholar 

  57. Liu, P. et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat. Cell Biol. 15, 1340–1350 (2013).

    Article  CAS  Google Scholar 

  58. Liu, P. et al. PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov. 5, 1194–1209 (2015).

    Article  CAS  Google Scholar 

  59. Dengler, H. S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat. Immunol. 9, 1388–1398 (2008).

    Article  CAS  Google Scholar 

  60. Amin, R. H. & Schlissel, M. S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).

    Article  CAS  Google Scholar 

  61. Inoue, T. et al. The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J. Exp. Med. 214, 1181–1198 (2017).

    Article  CAS  Google Scholar 

  62. Li, F., Smith, P. & Ravetch, J. V. Inhibitory Fcgamma receptor is required for the maintenance of tolerance through distinct mechanisms. J. Immunol. 192, 3021–3028 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kevan M Shokat (UCSF) for generously providing pp242 and Dr. William Sessa (Yale University) for providing the Akt1-Akt2 bone marrow samples. We would like to thank Dr. Biao He (Fudan University) for assisting with the PR8 virus challenge. We also want to thank Dr. David Schatz (Yale University), Dr. Yuan Zhuang (Duke University) for kindly reading the manuscript and providing helpful comments. This study was partially supported by grant PR093728 (DoD to B.S.), the National Natural Science Foundation of China (grant numbers 31470845 and 81430033 to B.S., 31422020 to F.L. and 31600704 to H.H.Z.), grant 13JC1404700 from the Program of Science and Technology Commission of Shanghai Municipality (B.S.), the Ministry of Science and Technology of China (Program 2014CB943600, F.L.), and Chinese Mega Project on Infectious Diseases (No. 2018ZX10302301). F.L. is supported by the “Shu Guang” project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation. A.S.L. is a recipient of Brown-Cox Fellowship from Yale University and is a Leukemia & Lymphoma Society fellow.

Author information

Authors and Affiliations

Authors

Contributions

F.L., A.S.L. and B.S. conceived and designed the experiments and wrote the paper. M.L. and A.S.L. performed the experiments, analyzed the data and wrote the paper. X.O. generated the Sin1fl/fl mice. O.A., X.X., D.L., Q.W., L.Y., J.J. and Y.H. performed the experiments. A.S.L., O.A., X.X. and D.L. performed the fetal liver transplantation, in vitro pro-B cell culture and immunoblotting. B cell development analyses were performed by M.L. X.B.L, W.Q.Z and H.H.Z. Flow cytometry, model antigen immunization, the PR8 virus infection assay and B cell metabolic measurements were performed by M.L., X.O., G.Q., Y.F., L.L., S.J., and Q.W. C.H., C.R., and Z.Y. discussed the data.

Corresponding authors

Correspondence to Fubin Li or Bing Su.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Lazorchak, A.S., Ouyang, X. et al. Sin1/mTORC2 regulate B cell growth and metabolism by activating mTORC1 and Myc. Cell Mol Immunol 16, 757–769 (2019). https://doi.org/10.1038/s41423-018-0185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0185-x

This article is cited by

Search

Quick links