Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting PVR (CD155) and its receptors in anti-tumor therapy

Abstract

Poliovirus receptor (PVR, CD155) has recently been gaining scientific interest as a therapeutic target in the field of tumor immunology due to its prominent endogenous and immune functions. In contrast to healthy tissues, PVR is expressed at high levels in several human malignancies and seems to have protumorigenic and therapeutically attractive properties that are currently being investigated in the field of recombinant oncolytic virotherapy. More intriguingly, PVR participates in a considerable number of immunoregulatory functions through its interactions with activating and inhibitory immune cell receptors. These functions are often modified in the tumor microenvironment, contributing to tumor immunosuppression. Indeed, increasing evidence supports the rationale for developing strategies targeting these interactions, either in terms of checkpoint therapy (i.e., targeting inhibitory receptors) or in adoptive cell therapy, which targets PVR as a tumor marker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takai, Y., Miyoshi, J., Ikeda, W. & Ogita, H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat. Rev. Mol. Cell Biol. 9, 603–615 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Gromeier, M., Lachmann, S., Rosenfeld, M. R., Gutin, P. H. & Wimmer, E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl Acad. Sci. USA 97, 6803–6808 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Masson, D. et al. Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49, 236–240 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Castriconi, R. et al. Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res. 64, 9180–9184 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Pende, D. et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105, 2066–2073 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Carlsten, M. et al. Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J. Immunol. 183, 4921–4930 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Sloan, K. E., Stewart, J. K., Treloar, A. F., Matthews, R. T. & Jay, D. G. CD155/PVR enhances glioma cell dispersal by regulating adhesion signaling and focal adhesion dynamics. Cancer Res. 65, 10930–10937 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kono, T. et al. The CD155/poliovirus receptor enhances the proliferation of ras-mutated cells. Int. J. Cancer 122, 317–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Martinet, L. & Smyth, M. J. Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 15, 243–254 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Nishiwada, S. et al. Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 35, 2287–2297 (2015).

    CAS  PubMed  Google Scholar 

  11. Bowers, J. R., Readler, J. M., Sharma, P. & Excoffon, K. Poliovirus receptor: more than a simple viral receptor. Virus Res. 242, 1–6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carlsten, M. et al. Reduced DNAM-1 expression on bone marrow NK cells associated with impaired killing of CD34+ blasts in myelodysplastic syndrome. Leukemia 24, 1607–1616 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Li, X. Y. et al. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J. Clin. Invest. 128, 2613–2625 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bronte, V. The expanding constellation of immune checkpoints: a DNAMic control by CD155. J. Clin. Invest. 128, 2199–2201 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gao, J., Zheng, Q., Xin, N., Wang, W. & Zhao, C. CD155, an onco-immunologic molecule in human tumors. Cancer Sci. 108, 1934–1938 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mendelsohn, C. L., Wimmer, E. & Racaniello, V. R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56, 855–865 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Stengel, K. F. et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc. Natl Acad. Sci. USA 109, 5399–5404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koike, S. et al. The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 9, 3217–3224 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baury, B. et al. Identification of secreted CD155 isoforms. Biochem. Biophys. Res. Commun. 309, 175–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Iguchi-Manaka, A. et al. Increased soluble CD155 in the serum of cancer patients. PLoS ONE 11, e0152982 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Deng, W. et al. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science 348, 136–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T cell activation. Nature 419, 734–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, X. & Lang, J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget 8, 97671–97682 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Oda, T., Ohka, S. & Nomoto, A. Ligand stimulation of CD155alpha inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem. Biophys. Res. Commun. 319, 1253–1264 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Ohka, S., Ohno, H., Tohyama, K. & Nomoto, A. Basolateral sorting of human poliovirus receptor alpha involves an interaction with the mu1B subunit of the clathrin adaptor complex in polarized epithelial cells. Biochem. Biophys. Res. Commun. 287, 941–948 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Yusa, S., Catina, T. L. & Campbell, K. S. SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells. J. Immunol. 168, 5047–5057 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Lange, R., Peng, X., Wimmer, E., Lipp, M. & Bernhardt, G. The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology 285, 218–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Reymond, N. et al. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J. Exp. Med. 199, 1331–1341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sullivan, D. P., Seidman, M. A. & Muller, W. A. Poliovirus receptor (CD155) regulates a step in transendothelial migration between PECAM and CD99. Am. J. Pathol. 182, 1031–1042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kakunaga, S. et al. Enhancement of serum- and platelet-derived growth factor-induced cell proliferation by Necl-5/Tage4/poliovirus receptor/CD155 through the Ras-Raf-MEK-ERK signaling. J. Biol. Chem. 279, 36419–36425 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda, W. et al. Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, Nectin-3-independent manner. J. Biol. Chem. 279, 18015–18025 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Minami, Y. et al. Necl-5/poliovirus receptor interacts in cis with integrin alphaVbeta3 and regulates its clustering and focal complex formation. J. Biol. Chem. 282, 18481–18496 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Kajita, M., Ikeda, W., Tamaru, Y. & Takai, Y. Regulation of platelet-derived growth factor-induced Ras signaling by poliovirus receptor Necl-5 and negative growth regulator Sprouty2. Genes Cells 12, 345–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, E. et al. Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Sci. Rep. 4, 7139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kinugasa, M. et al. Necl-5/poliovirus receptor interacts with VEGFR2 and regulates VEGF-induced angiogenesis. Circ. Res. 110, 716–726 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Campbell, H. K., Maiers, J. L. & DeMali, K. A. Interplay between tight junctions & adherens junctions. Exp. Cell Res. 358, 39–44 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujito, T. et al. Inhibition of cell movement and proliferation by cell-cell contact-induced interaction of Necl-5 with nectin-3. J. Cell Biol. 171, 165–173 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stanietsky, N. & Mandelboim, O. Paired NK cell receptors controlling NK cytotoxicity. FEBS Lett. 584, 4895–4900 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 15, 431–438 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. de Andrade, L. F., Smyth, M. J. & Martinet, L. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol. 92, 237–244 (2014).

    Article  PubMed  CAS  Google Scholar 

  42. Shibuya, A. et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4, 573–581 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joller, N. et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol. 186, 1338–1342 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Stanietsky, N. et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl Acad. Sci. USA 106, 17858–17863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Dougall, W. C., Kurtulus, S., Smyth, M. J. & Anderson, A. C. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol. Rev. 276, 112–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Blake, S. J. et al. Suppression of metastases using a new lymphocyte checkpoint target for cancer immunotherapy. Cancer Discov. 6, 446–459 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Fuchs, A., Cella, M., Giurisato, E., Shaw, A. S. & Colonna, M. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J. Immunol. 172, 3994–3998 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Stanko, K. et al. CD96 expression determines the inflammatory potential of IL-9-producing Th9 cells. Proc. Natl Acad. Sci. USA 115, E2940–E2949 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Denis, M. G. Characterization, cloning and expression of the Tage4 gene, a member of the immunoglobulin superfamily. Int. J. Oncol. 12, 997–1005 (1998).

    CAS  PubMed  Google Scholar 

  52. Lim, Y. P., Fowler, L. C., Hixson, D. C., Wehbe, T. & Thompson, N. L. TuAg.1 is the liver isoform of the rat colon tumor-associated antigen pE4 and a member of the immunoglobulin-like supergene family. Cancer Res. 56, 3934–3940 (1996).

    CAS  PubMed  Google Scholar 

  53. Nakai, R. et al. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 101, 1326–1330 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Bevelacqua, V. et al. Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget 3, 882–892 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Inozume, T. et al. Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J. Invest. Dermatol. 136, 255–263 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Huang, D. W., Huang, M., Lin, X. S. & Huang, Q. CD155 expression and its correlation with clinicopathologic characteristics, angiogenesis, and prognosis in human cholangiocarcinoma. Onco. Targets Ther. 10, 3817–3825 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hirota, T., Irie, K., Okamoto, R., Ikeda, W. & Takai, Y. Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf-MEK-ERK-AP-1 pathway. Oncogene 24, 2229–2235 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Solecki, D. J., Gromeier, M., Mueller, S., Bernhardt, G. & Wimmer, E. Expression of the human poliovirus receptor/CD155 gene is activated by sonic hedgehog. J. Biol. Chem. 277, 25697–25702 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Soriani, A. et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503–3511 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Soriani, A. et al. Chemotherapy-elicited upregulation of NKG2D and DNAM-1 ligands as a therapeutic target in multiple myeloma. Oncoimmunology 2, e26663 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Atsumi, S. et al. Prognostic significance of CD155 mRNA expression in soft tissue sarcomas. Oncol. Lett. 5, 1771–1776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tane, S. et al. The role of Necl-5 in the invasive activity of lung adenocarcinoma. Exp. Mol. Pathol. 94, 330–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Sloan, K. E. et al. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 4, 73 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zheng, Q. et al. CD155 knockdown promotes apoptosis via AKT/Bcl-2/Bax in colon cancer cells. J. Cell. Mol. Med. 22, 131–140 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Escalante, N. K., von Rossum, A., Lee, M. & Choy, J. C. CD155 on human vascular endothelial cells attenuates the acquisition of effector functions in CD8 T cells. Arterioscler. Thromb. Vasc. Biol. 31, 1177–1184 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Merrill, M. K. et al. Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro. Oncol. 6, 208–217 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Iwasaki, A. et al. Immunofluorescence analysis of poliovirus receptor expression in Peyer’s patches of humans, primates, and CD155 transgenic mice: implications for poliovirus infection. J. Infect. Dis. 186, 585–592 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Iguchi-Manaka, A. et al. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J. Exp. Med. 205, 2959–2964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gilfillan, S. et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J. Exp. Med. 205, 2965–2973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shibuya, K. et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J. Exp. Med. 198, 1829–1839 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tahara-Hanaoka, S. et al. Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 107, 1491–1496 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Seth, S. et al. Heterogeneous expression of the adhesion receptor CD226 on murine NK and T cells and its function in NK-mediated killing of immature dendritic cells. J. Leukoc. Biol. 86, 91–101 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Smith, L. E. et al. Sensitivity of dendritic cells to NK-mediated lysis depends on the inflammatory environment and is modulated by CD54/CD226-driven interactions. J. Leukoc. Biol. 100, 781–789 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Bachelet, I., Munitz, A., Mankutad, D. & Levi-Schaffer, F. Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2): a novel interface in the allergic process. J. Biol. Chem. 281, 27190–27196 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Pende, D. et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107, 2030–2036 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Kojima, H. et al. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J. Biol. Chem. 278, 36748–36753 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Mamessier, E. et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121, 3609–3622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pievani, A. et al. Dual-functional capability of CD3+ CD56 + CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood 118, 3301–3310 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Wu, M. R., Zhang, T., Alcon, A. & Sentman, C. L. DNAM-1-based chimeric antigen receptors enhance T cell effector function and exhibit in vivo efficacy against melanoma. Cancer Immunol. Immunother. 64, 409–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Lenac Rovis, T. et al. Inflammatory monocytes and NK cells play a crucial role in DNAM-1-dependent control of cytomegalovirus infection. J. Exp. Med. 213, 1835–1850 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Joller, N. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26, 923–937 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Pauken, K. E. & Wherry, E. J. TIGIT and CD226: tipping the balance between costimulatory and coinhibitory molecules to augment the cancer immunotherapy toolkit. Cancer Cell 26, 785–787 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Blake, S. J., Dougall, W. C., Miles, J. J., Teng, M. W. & Smyth, M. J. Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin. Cancer Res. 22, 5183–5188 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, P. L., O’Farrell, S., Clayberger, C. & Krensky, A. M. Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J. Immunol. 148, 2600–2608 (1992).

    CAS  PubMed  Google Scholar 

  87. Zhang, W. et al. Expressions of CD96 and CD123 in bone marrow cells of patients with myelodysplastic syndromes. Clin. Lab. 61, 1429–1434 (2015).

    CAS  PubMed  Google Scholar 

  88. Hosen, N. et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc. Natl Acad. Sci. USA 104, 11008–11013 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gramatzki, M. et al. Antibodies TC-12 (“unique”) and TH-111 (CD96) characterize T-cell acute lymphoblastic leukemia and a subgroup of acute myeloid leukemia. Exp. Hematol. 26, 1209–1214 (1998).

    CAS  PubMed  Google Scholar 

  90. Stanietsky, N. et al. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur. J. Immunol. 43, 2138–2150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McVicar, D. W. & Burshtyn, D. N. Intracellular signaling by the killer immunoglobulin-like receptors and Ly49. Sci. STKE 2001, re1 (2001).

    CAS  PubMed  Google Scholar 

  92. Roman Aguilera, A. et al. CD96 targeted antibodies need not block CD96-CD155 interactions to promote NK cell anti-metastatic activity. Oncoimmunology 7, e1424677 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fukuhara, H., Ino, Y. & Todo, T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 107, 1373–1379 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Desjardins, A. et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379, 150–161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hogle, J. M. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu. Rev. Microbiol. 56, 677–702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lwoff, A., Dulbecco, R., Vogt, M. & Lwoff, M. Kinetics of the release of poliomyelitis virus from single cells. Ann. N. Y. Acad. Sci. 61, 801–805 (1955).

    Article  CAS  PubMed  Google Scholar 

  98. Daley, J. K., Gechman, L. A., Skipworth, J. & Rall, G. F. Poliovirus replication and spread in primary neuron cultures. Virology 340, 10–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Chandramohan, V. et al. Validation of an immunohistochemistry assay for detection of CD155, the poliovirus receptor, in malignant gliomas. Arch. Pathol. Lab. Med. 141, 1697–1704 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bodian, D. Emerging concept of poliomyelitis infection. Science 122, 105–108 (1955).

    Article  CAS  PubMed  Google Scholar 

  101. Sabin, A. B. Pathogenesis of poliomyelitis; reappraisal in the light of new data. Science 123, 1151–1157 (1956).

    Article  CAS  PubMed  Google Scholar 

  102. Kauder, S. E. & Racaniello, V. R. Poliovirus tropism and attenuation are determined after internal ribosome entry. J. Clin. Invest. 113, 1743–1753 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ida-Hosonuma, M. et al. The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J. Virol. 79, 4460–4469 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Georgescu, M. M. et al. Evolution of the Sabin type 1 poliovirus in humans: characterization of strains isolated from patients with vaccine-associated paralytic poliomyelitis. J. Virol. 71, 7758–7768 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wimmer, E., Hellen, C. U. & Cao, X. Genetics of poliovirus. Annu. Rev. Genet. 27, 353–436 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Gromeier, M., Alexander, L. & Wimmer, E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Natl Acad. Sci. USA 93, 2370–2375 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Merrill, M. K., Dobrikova, E. Y. & Gromeier, M. Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J. Virol. 80, 3147–3156 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Merrill, M. K. & Gromeier, M. The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J. Virol. 80, 6936–6942 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Neplioueva, V., Dobrikova, E. Y., Mukherjee, N., Keene, J. D. & Gromeier, M. Tissue type-specific expression of the dsRNA-binding protein 76 and genome-wide elucidation of its target mRNAs. PLoS ONE 5, e11710 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Brown, M. C. & Gromeier, M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr. Opin. Virol. 13, 81–85 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gromeier, M., Bossert, B., Arita, M., Nomoto, A. & Wimmer, E. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J. Virol. 73, 958–964 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Campbell, S. A., Lin, J., Dobrikova, E. Y. & Gromeier, M. Genetic determinants of cell type-specific poliovirus propagation in HEK 293 cells. J. Virol. 79, 6281–6290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Goetz, C., Dobrikova, E., Shveygert, M., Dobrikov, M. & Gromeier, M. Oncolytic poliovirus against malignant glioma. Future Virol. 6, 1045–1058 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Thompson, E. M. et al. Poliovirus receptor (CD155) expression in pediatric brain tumors mediates oncolysis of medulloblastoma and pleomorphic xanthoastrocytoma. J. Neuropathol. Exp. Neurol. 77, 696–702 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cello, J. et al. Growth phenotypes and biosafety profiles in poliovirus-receptor transgenic mice of recombinant oncolytic polio/human rhinoviruses. J. Med. Virol. 80, 352–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Abe, Y. et al. The toll-like receptor 3-mediated antiviral response is important for protection against poliovirus infection in poliovirus receptor transgenic mice. J. Virol. 86, 185–194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kotla, S. & Gustin, K. E. Proteolysis of MDA5 and IPS-1 is not required for inhibition of the type I IFN response by poliovirus. Virol. J. 12, 158 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Dodd, D. A., Giddings, T. H. Jr & Kirkegaard, K. Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J. Virol. 75, 8158–8165 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Morrison, J. M. & Racaniello, V. R. Proteinase 2Apro is essential for enterovirus replication in type I interferon-treated cells. J. Virol. 83, 4412–4422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brown, M. C. et al. Oncolytic polio virotherapy of cancer. Cancer 120, 3277–3286 (2014).

    Article  PubMed  Google Scholar 

  121. Brown, M. C. et al. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci. Transl. Med. 9, eaan4220 (2017).

  122. Holl, E. K. et al. Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget 7, 79828–79841 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Toyoda, H., Wimmer, E. & Cello, J. Oncolytic poliovirus therapy and immunization with poliovirus-infected cell lysate induces potent antitumor immunity against neuroblastoma in vivo. Int. J. Oncol. 38, 81–87 (2011).

    PubMed  Google Scholar 

  124. Castriconi, R. et al. NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J. Immunol. 182, 3530–3539 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Maherally, Z., Smith, J. R., An, Q. & Pilkington, G. J. Receptors for hyaluronic acid and poliovirus: a combinatorial role in glioma invasion? PLoS ONE 7, e30691 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Enloe, B. M. & Jay, D. G. Inhibition of Necl-5 (CD155/PVR) reduces glioblastoma dispersal and decreases MMP-2 expression and activity. J. Neurooncol. 102, 225–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Gromeier, M., Solecki, D., Patel, D. D. & Wimmer, E. Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology 273, 248–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Toyoda, H., Yin, J., Mueller, S., Wimmer, E. & Cello, J. Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res. 67, 2857–2864 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Dobrikova, E. Y. et al. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol. Ther. 16, 1865–1872 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Denniston, E. et al. The practical consideration of poliovirus as an oncolytic virotherapy. Am. J. Virol. 5, 1–7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Drake, C. G., Jaffee, E. & Pardoll, D. M. Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Strohl, W. R. Current progress in innovative engineered antibodies. Protein Cell 9, 86–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Mahmoudi, M. & Farokhzad, O. C. Cancer immunotherapy: wound-bound checkpoint blockade. Nat. Biomed. Eng. 1, 0031 (2017).

    Article  Google Scholar 

  134. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, L. & Han, X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J. Clin. Invest. 125, 3384–3391 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Callahan, M. K. & Wolchok, J. D. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J. Leukoc. Biol. 94, 41–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Burugu, S., Dancsok, A. R. & Nielsen, T. O. Emerging targets in cancer immunotherapy. Semin Cancer Biol. (2017). https://doi.org/10.1016/j.semcancer.2017.10.001.

  139. Chauvin, J. M. et al. TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J. Clin. Invest. 125, 2046–2058 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Dixon, K. O. et al. Functional anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J. Immunol. 200, 3000–3007 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Kurtulus, S. et al. TIGIT predominantly regulates the immune response via regulatory T cells. J. Clin. Invest. 125, 4053–4062 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. (2018).

  143. Georgiev, H., Ravens, I., Papadogianni, G. & Bernhardt, G. Coming of age: CD96 emerges as modulator of immune responses. Front. Immunol. 9, 1072 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Barrow, A. D. et al. Natural killer cells control tumor growth by sensing a growth factor. Cell 172, 534–48 e19 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Harjunpaa, H. et al. Deficiency of host CD96 and PD-1 or TIGIT enhances tumor immunity without significantly compromising immune homeostasis. Oncoimmunology 7, e1445949 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Meyer, D. et al. CD96 interaction with CD155 via its first Ig-like domain is modulated by alternative splicing or mutations in distal Ig-like domains. J. Biol. Chem. 284, 2235–2244 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Seth, S. et al. The murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem. Biophys. Res. Commun. 364, 959–965 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Carlsten, M. et al. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res. 67, 1317–1325 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. El-Sherbiny, Y. M. et al. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res. 67, 8444–8449 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Peng, Y. P. et al. Altered expression of CD226 and CD96 on natural killer cells in patients with pancreatic cancer. Oncotarget 7, 66586–66594 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. Coustan-Smith, E. et al. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight 3, 98561 (2018).

  152. Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Kourie, H. R. & Klastersky, J. Immune checkpoint inhibitors side effects and management. Immunotherapy 8, 799–807 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Zang, Y. W., Gu, X. D., Xiang, J. B. & Chen, Z. Y. Clinical application of adoptive T cell therapy in solid tumors. Med. Sci. Monit. 20, 953–959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kunert, A. & Debets, R. Engineering T cells for adoptive therapy: outsmarting the tumor. Curr. Opin. Immunol. 51, 133–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Dai, H., Wang, Y., Lu, X. & Han, W. Chimeric antigen receptors modified T-cells for cancer therapy. J. Natl Cancer Inst. 108, djv439 (2016).

  157. Iyer, R. K., Bowles, P. A., Kim, H. & Dulgar-Tulloch, A. Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Front. Med. 5, 150 (2018).

    Article  Google Scholar 

  158. Kosti, P., Maher, J. & Arnold, J. N. Perspectives on chimeric antigen receptor T-cell immunotherapy for solid tumors. Front. Immunol. 9, 1104 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Chmielewski, M. & Abken, H. TRUCKs: the fourth generation of CARs. Expert Opin. Biol. Ther. 15, 1145–1154 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Pang, Y., Hou, X., Yang, C., Liu, Y. & Jiang, G. Advances on chimeric antigen receptor-modified T-cell therapy for oncotherapy. Mol. Cancer 17, 91 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Salmikangas, P., Kinsella, N. & Chamberlain, P. Chimeric antigen receptor T-cells (CAR T-Cells) for cancer immunotherapy - moving target for industry? Pharm. Res. 35, 152 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Scheuermann, R. H. & Racila, E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk. Lymphoma 18, 385–397 (1995).

    Article  CAS  PubMed  Google Scholar 

  163. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gacerez, A. T., Arellano, B. & Sentman, C. L. How chimeric antigen receptor design affects adoptive T cell therapy. J. Cell. Physiol. 231, 2590–2598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chan, C. J. et al. DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J. Immunol. 184, 902–911 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Kim, J. S. et al. Cd226(-/-) natural killer cells fail to establish stable contacts with cancer cells and show impaired control of tumor metastasis in vivo. Oncoimmunology 6, e1338994 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cappel, C. et al. Cytotoxic potential of IL-15-activated cytokine-induced killer cells against human neuroblastoma cells. Pediatr. Blood Cancer 63, 2230–2239 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Martinet, L. et al. DNAM-1 expression marks an alternative program of NK cell maturation. Cell Rep. 11, 85–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Rosskopf, S. et al. A Jurkat 76 based triple parameter reporter system to evaluate TCR functions and adoptive T cell strategies. Oncotarget 9, 17608–17619 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Sanchez-Correa, B. et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol. Cell Biol. 90, 109–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Sun, S., Hao, H., Yang, G., Zhang, Y. & Fu, Y. Immunotherapy with CAR-modified T cells: toxicities and overcoming strategies. J. Immunol. Res. 2018, 2386187 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Sentman, M. L. et al. Mechanisms of acute toxicity in NKG2D chimeric antigen receptor T cell-treated mice. J. Immunol. 197, 4674–4685 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Morisaki, T., Onishi, H. & Katano, M. Cancer immunotherapy using NKG2D and DNAM-1 systems. Anticancer Res. 32, 2241–2247 (2012).

    CAS  PubMed  Google Scholar 

  174. Lee, A., Sun, S., Sandler, A. & Hoang, T. Recent progress in therapeutic antibodies for cancer immunotherapy. Curr. Opin. Chem. Biol. 44, 56–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Niu, C. et al. Low-dose bortezomib increases the expression of NKG2D and DNAM-1 ligands and enhances induced NK and gammadelta T cell-mediated lysis in multiple myeloma. Oncotarget 8, 5954–5964 (2017).

    PubMed  Google Scholar 

  176. Lopez-Cobo, S. et al. Impaired NK cell recognition of vemurafenib-treated melanoma cells is overcome by simultaneous application of histone deacetylase inhibitors. Oncoimmunology 7, e1392426 (2018).

    Article  PubMed  Google Scholar 

  177. Kamran, N. et al. Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS ONE 8, e54406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yamashita-Kanemaru, Y. et al. CD155 (PVR/Necl-5) mediates a costimulatory signal in CD4+T cells and regulates allergic inflammation. J. Immunol. 194, 5644–5653 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Maier, M. K. et al. The adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigens. Eur. J. Immunol. 37, 2214–2225 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Tahara-Hanaoka, S. et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 16, 533–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Oshima, T. et al. Nectin-2 is a potential target for antibody therapy of breast and ovarian cancers. Mol. Cancer 12, 60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liu, J. et al. Crystal structure of cell adhesion molecule nectin-2/CD112 and its binding to immune receptor DNAM-1/CD226. J. Immunol. 188, 5511–5520 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Seth, S. et al. Intranodal interaction with dendritic cells dynamically regulates surface expression of the co-stimulatory receptor CD226 protein on murine T cells. J. Biol. Chem. 286, 39153–39163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Stamm, H. et al. Immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option. Oncogene (2018). https://doi.org/10.1038/s41388-018-0288-y.

  185. Morimoto, K. et al. Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancer cell metastasis to the lungs. Oncogene 27, 264–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Nasiri, H., Valedkarimi, Z., Aghebati-Maleki, L. & Majidi, J. Antibody-drug conjugates: promising and efficient tools for targeted cancer therapy. J. Cell. Physiol. 233, 6441–6457 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. American Association for Cancer Research. Targeting Nectin-4 in bladder cancer. Cancer Discov. 7, OF3 (2017). https://doi.org/10.1158/2159-8290.CD-NB2017-095.

  188. Challita-Eid, P. M. et al. Enfortumab Vedotin antibody-drug conjugate targeting Nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 76, 3003–3013 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.J. is supported by the grant “Strengthening the capacity of CerVirVac for research in virus immunology and vaccinology”, KK.01.1.1.01.0006, awarded to the Scientific Centre of Excellence for Virus Immunology and Vaccines and co-financed by the European Regional Development Fund. P.K.B. and T.L.R. are supported by the Croatian Science Foundation (HRZZ) under project number 1533.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola Kučan Brlić or Stipan Jonjić.

Ethics declarations

Competing interests

S.J., O.M. and P.T. are shareholders in Nectin Therapeutics Ltd. The remaining authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kučan Brlić, P., Lenac Roviš, T., Cinamon, G. et al. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 16, 40–52 (2019). https://doi.org/10.1038/s41423-018-0168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0168-y

Keywords

This article is cited by

Search

Quick links