Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

GAITing the GUT

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1

References

  1. Lee, S. H., Starkey, P. M. & Gordon, S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J. Exp. Med. 161, 475–489 (1985).

    Article  CAS  Google Scholar 

  2. Zigmond, E. & Jung, S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol. 34, 162–168 (2013).

    Article  CAS  Google Scholar 

  3. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    Article  CAS  Google Scholar 

  4. Mowat, A. M. & Bain, C. C. Mucosal macrophages in intestinal homeostasis and inflammation. J. Innate Immun. 3, 550–564 (2011).

    Article  Google Scholar 

  5. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  CAS  Google Scholar 

  6. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    Article  CAS  Google Scholar 

  7. Berg, R. D. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 3, 149–154 (1995).

    Article  CAS  Google Scholar 

  8. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  Google Scholar 

  9. Galli, S. J., Borregaard, N. & Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035–1044 (2011).

    Article  CAS  Google Scholar 

  10. Mills, C. D. & Ley, K. M1 and M2 macrophages: the chicken and the egg of immunity. J. Innate Immun. 6, 716–726 (2014).

    Article  CAS  Google Scholar 

  11. Smith, P. D. et al. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 4, 31–42 (2011).

    Article  Google Scholar 

  12. Poddar, D., Kaur, R., Baldwin, W. M. 3rd & Mazumder, B. L13a-dependent translational control in macrophages limits the pathogenesis of colitis. Cell. Mol. Immunol. 13, 816–827 (2016).

    Article  CAS  Google Scholar 

  13. Mazumder, B. & Fox, P. L. Delayed translational silencing of ceruloplasmin transcript in gamma interferon-activated U937 monocytic cells: role of the 3’ untranslated region. Mol. Cell. Biol. 19, 6898–6905 (1999).

    Article  CAS  Google Scholar 

  14. Vyas, K. et al. Genome-wide polysome profiling reveals an inflammation-responsive posttranscriptional operon in gamma interferon-activated monocytes. Mol. Cell. Biol. 29, 458–470 (2009).

    Article  CAS  Google Scholar 

  15. Kapasi, P. et al. L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control. Mol. Cell 25, 113–126 (2007).

    Article  CAS  Google Scholar 

  16. Poddar, D. et al. An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. J. Immunol. 190, 3600–3612 (2013).

    Article  CAS  Google Scholar 

  17. Basu, A. et al. Ribosomal protein L13a deficiency in macrophages promotes atherosclerosis by limiting translation control-dependent retardation of inflammation. Arterioscler. Thromb. Vasc. Biol. 34, 533–542 (2014).

    Article  CAS  Google Scholar 

  18. Cario, E. et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164, 966–972 (2000).

    Article  CAS  Google Scholar 

  19. Hisamatsu, T. et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124, 993–1000 (2003).

    Article  CAS  Google Scholar 

  20. Basu, A., Jain, N., Tolbert, B. S., Komar, A. A. & Mazumder, B. Conserved structures formed by heterogeneous RNA sequences drive silencing of an inflammation responsive post-transcriptional operon. Nucleic Acids Res. 45, 12987–13003 (2017).

    Article  CAS  Google Scholar 

  21. Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694–702 (1990).

    Article  CAS  Google Scholar 

  22. Merker, S. R., Weitz, J. & Stange, D. E. Gastrointestinal organoids: how they gut it out. Dev. Biol. 420, 239–250 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Anton Komar and Dr. Aaron Severson for their valuable comments on this manuscript and Dr. Patricia Stanhope Baker for assistance with manuscript editing. Research in the author’s laboratory was funded by the National Institute of Health (NIH) Public Health Service Grant No. HL 079164. The author also received financial assistance from the Center for Gene Regulation in Health & Disease of Cleveland State University and Ohio Third Frontier Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barsanjit Mazumder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mazumder, B. GAITing the GUT. Cell Mol Immunol 15, 1082–1084 (2018). https://doi.org/10.1038/s41423-018-0039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0039-6

Keywords

  • Translational Silencing
  • Intestinal Macrophages
  • GAIT Element
  • Noninflammatory State
  • DSS Administration

Search

Quick links