Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolic modulation of acetaminophen-induced hepatotoxicity by osteopontin

Abstract

Induction of osteopontin (OPN), a well-known pro-inflammatory molecule, has been observed in acetaminophen (APAP)-induced hepatotoxicity. However, the precise cell source for OPN induction and its role during APAP-induced hepatotoxicity has not been fully explored. By employing a hepatotoxic mouse model induced by APAP overdose, we demonstrate that both serum and hepatic OPN levels were significantly elevated in response to APAP treatment. Our in vivo and in vitro studies clearly indicated that the induced expression of hepatic OPN was mainly located in necrosis areas and produced by dying or dead hepatocytes. Functional experiments showed that OPN deficiency protected against the APAP-induced liver injury by inhibiting the toxic APAP metabolism via reducing the expression of the cytochrome P450 family 2 subfamily E member 1 (CYP2E1). Interestingly, this inhibition of CYP2E1 expression did not occur in unfasted Opn/ mice, but was significant in fasted Opn/ mice and maintained for 2 hours after APAP challenge in fasted Opn/ mice. In addition, despite the early protective role of OPN deficiency on APAP-induced hepatotoxicity, OPN deficiency retarded injury resolution by sensitizing hepatocytes to apoptosis and impairing liver regeneration. Finally, we demonstrated that a siRNA-mediated transient hepatic Opn knockdown could sufficiently and significantly protect animals from APAP-induced hepatotoxicity and death. In conclusion, this study clearly defines the cell source of OPN induction in response to APAP treatment, provides a novel insight into the metabolic role of OPN to APAP overdose, and suggests an Opn-targeted therapeutic strategy for the treatment or prevention of APAP-induced hepatotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davidson, D. G. & Eastham, W. N. Acute liver necrosis following overdose of paracetamol. Br. Med. J. 2, 497–499 (1966).

    Article  CAS  Google Scholar 

  2. Stravitz, R. T. & Kramer, D. J. Management of acute liver failure. Nat. Rev. Gastroenterol. Hepatol. 6, 542–553 (2009).

    Article  Google Scholar 

  3. Larson, A. M. et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42, 1364–1372 (2005).

    Article  CAS  Google Scholar 

  4. Dahlin, D. C., Miwa, G. T., Lu, A. Y. & Nelson, S. D. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc. Natl Acad. Sci. USA 81, 1327–1331 (1984).

    Article  CAS  Google Scholar 

  5. Lee, S. S., Buters, J. T., Pineau, T., Fernandez-Salguero, P. & Gonzalez, F. J. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J. Biol. Chem. 271, 12063–12067 (1996).

    Article  CAS  Google Scholar 

  6. Novak, R. F. & Woodcroft, K. J. The alcohol-inducible form of cytochrome P450 (CYP 2E1): role in toxicology and regulation of expression. Arch. Pharmacol. Res. 23, 267–282 (2000).

    Article  CAS  Google Scholar 

  7. Xie, Y. et al. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol. Appl. Pharmacol. 279, 266–274 (2014).

    Article  CAS  Google Scholar 

  8. McGill, M. R. et al. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J. Clin. Invest. 122, 1574–1583 (2012).

    Article  CAS  Google Scholar 

  9. Krenkel, O., Mossanen, J. C. & Tacke, F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg. Nutr. 3, 331–343 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Lancaster, E. M., Hiatt, J. R. & Zarrinpar, A. Acetaminophen hepatotoxicity: an updated review. Arch. Toxicol. 89, 193–199 (2015).

    Article  CAS  Google Scholar 

  11. Jaeschke, H., Williams, C. D., Ramachandran, A. & Bajt, M. L. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int. 32, 8–20 (2012).

    Article  CAS  Google Scholar 

  12. Zhang, C. et al. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell. Mol. Immunol. (2017). PMID 28504245 (DOI:10.1038/cmi.2017.22). Published online on 15 May, 2017.

    Article  Google Scholar 

  13. Jaeschke, H. Mechanisms of sterile inflammation in acetaminophen hepatotoxicity. Cell. Mol. Immunol. 15, 74–75 (2018).

    Article  CAS  Google Scholar 

  14. Iracheta-Vellve, A. & Szabo, G. IL-1α in acetaminophen toxicity: a sterile danger signal. Cell. Mol. Immunol. 15, 284–285 (2018).

    Article  Google Scholar 

  15. Whitcomb, D. C. & Block, G. D. Association of acetaminophen hepatotoxicity with fasting and ethanol use. JAMA 272, 1845–1850 (1994).

    Article  CAS  Google Scholar 

  16. Bai, J. Adenovirus-mediated expression of CYP2E1 produces liver toxicity in mice. Toxicol. Sci. 91, 365–371 (2006).

    Article  CAS  Google Scholar 

  17. Wen, Y., Jeong, S., Xia, Q. & Kong, X. Role of osteopontin in liver diseases. Int. J. Biol. Sci. 12, 1121–1128 (2016).

    Article  CAS  Google Scholar 

  18. Kawashima, R. et al. Expression of osteopontin in Kupffer cells and hepatic macrophages and Stellate cells in rat liver after carbon tetrachloride intoxication: a possible factor for macrophage migration into hepatic necrotic areas. Biochem. Biophys. Res. Commun. 256, 527–531 (1999).

    Article  CAS  Google Scholar 

  19. Fan, X. et al. Intracellular osteopontin inhibits toll-like receptor signaling and impedes liver carcinogenesis. Cancer Res. 75, 86–97 (2015).

    Article  CAS  Google Scholar 

  20. Patouraux, S. et al. Osteopontin deficiency aggravates hepatic injury induced by ischemia–reperfusion in mice. Cell Death Dis. 5, e1208 (2014).

    Article  CAS  Google Scholar 

  21. Wen, Y. et al. Defective initiation of liver regeneration in osteopontin-deficient mice after partial hepatectomy due to insufficient activation of IL-6/Stat3 pathway. Int. J. Biol. Sci. 11, 1236–1247 (2015).

    Article  CAS  Google Scholar 

  22. He, C. Y. et al. The dual role of osteopontin in acetaminophen hepatotoxicity. Acta Pharmacol. Sin. 33, 1004–1012 (2012).

    Article  CAS  Google Scholar 

  23. Srungaram, P. et al. Plasma osteopontin in acute liver failure. Cytokine 73, 270–276 (2015).

    Article  CAS  Google Scholar 

  24. Saito, Y. et al. Osteopontin small interfering RNA protects mice from fulminant hepatitis. Human. Gene Ther. 18, 1205–1214 (2007).

    Article  CAS  Google Scholar 

  25. Wang, Z., Bishop, E. P. & Burke, P. A. Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4alpha. BMC Genomics 12, 128 (2011).

    Article  CAS  Google Scholar 

  26. Hanawa, N. et al. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J. Biol. Chem. 283, 13565–13577 (2008).

    Article  CAS  Google Scholar 

  27. Seki, E., Brenner, D. A. & Karin, M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 143, 307–320 (2012).

    Article  CAS  Google Scholar 

  28. Hu, J., Ramshesh, V. K., McGill, M. R., Jaeschke, H. & Lemasters, J. J. Low dose acetaminophen induces reversible mitochondrial dysfunction associated with transient c-Jun N-terminal kinase activation in mouse liver. Toxicol. Sci. 150, 204–215 (2016).

    Article  CAS  Google Scholar 

  29. Ni, H. M., Bockus, A., Boggess, N., Jaeschke, H. & Ding, W. X. Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology 55, 222–232 (2012).

    Article  CAS  Google Scholar 

  30. Lee, J., Giordano, S. & Zhang, J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523–540 (2012).

    Article  CAS  Google Scholar 

  31. Bellward, G. D. et al. Hepatic cytochrome P-450j induction in the spontaneously diabetic BB rat. Mol. Pharmacol. 33, 140–143 (1988).

    CAS  PubMed  Google Scholar 

  32. Song, B. J., Veech, R. L., Park, S. S., Gelboin, H. V. & Gonzalez, F. J. Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization. J. Biol. Chem. 264, 3568–3572 (1989).

    CAS  PubMed  Google Scholar 

  33. Possamai, L. A. et al. Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure*. Crit. Care Med. 41, 2543–2550 (2013).

    Article  CAS  Google Scholar 

  34. Yang, M. et al. Osteopontin is an initial mediator of inflammation and liver injury during obstructive cholestasis after bile duct ligation in mice. Toxicol. Lett. 224, 186–195 (2014).

    Article  CAS  Google Scholar 

  35. Wang, Y. et al. Increased expression of osteopontin in activated Kupffer cells and hepatic macrophages during macrophage migration in Propionibacterium acnes-treated rat liver. J. Gastroenterol. 35, 696–701 (2000).

    Article  CAS  Google Scholar 

  36. Sahai, A. et al. Roles of phosphatidylinositol 3-kinase and osteopontin in steatosis and aminotransferase release by hepatocytes treated with methionine-choline-deficient medium. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G55–G62 (2006).

    Article  CAS  Google Scholar 

  37. Wang, X. et al. Osteopontin induces ductular reaction contributing to liver fibrosis. Gut 63, 1805–1818 (2014).

    Article  CAS  Google Scholar 

  38. Williams, C. D. et al. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol. Appl. Pharmacol. 275, 122–133 (2014).

    Article  CAS  Google Scholar 

  39. Morales-Ibanez, O. et al. Human and experimental evidence supporting a role for osteopontin in alcoholic hepatitis. Hepatology 58, 1742–1756 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81670562 and 31300742 to X.K., 81670598 to Q.X., 81372233 to H.W., and 81673935 to X.S.) and a grant from the Shanghai Municipal Education Commission (Gaofeng Clinical Medicine Grant Support (20171911) to X.K., National Science and Technology major grant (2017ZX10203204-006-005) to X.K., and the Shanghai Health Bureau Key Joint Efforts Foundation (2013ZYJB001) to Q.X.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Xia or Xiaoni Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Wang, C., Gu, J. et al. Metabolic modulation of acetaminophen-induced hepatotoxicity by osteopontin. Cell Mol Immunol 16, 483–494 (2019). https://doi.org/10.1038/s41423-018-0033-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0033-z

Keywords

This article is cited by

Search

Quick links