Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis

Abstract

Leukotriene B4 (LTB4) synthesis is enhanced in the colonic mucosa in patients with inflammatory bowel disease (IBD). BLT1, a high-affinity receptor for LTB4, exhibits no effect on the progression of dextran sodium sulfate (DSS)-induced colitis, which mostly relies on innate immunity. Here, we reported that BLT1 regulates trinitrobenzene sulfonic acid (TNBS)-induced colitis, which reflects CD4+ T-cell-dependent adaptive immune mechanisms of IBD. We found that BLT1 signaling enhanced the progression of colitis through controlling the production of proinflammatory cytokines by dendritic cells (DCs) and modulating the differentiation of Th1 and Th17. BLT1−/− mice displayed an alleviated severity of TNBS-induced colitis with reduced body weight loss and infiltrating cells in the lamina propria. BLT1 deficiency in DCs led to reduced production of proinflammatory cytokines, including IL-6, TNF-α, and IL-12, and these results were further confirmed via treatment with a BLT1 antagonist. The impaired cytokine production by BLT1−/− DCs subsequently led to reduced Th1 and Th17 differentiation both in vitro and in vivo. We further performed a conditional DC reconstitution experiment to assess whether BLT1 in DCs plays a major role in regulating the pathogenesis of TNBS-induced colitis, and the results indicate that BLT1 deficiency in DCs also significantly reduces disease severity. The mechanistic study demonstrated that BLT1-regulated proinflammatory cytokine production through the Gαi βγ subunit-phospholipase Cβ (PLCβ)-PKC pathway. Notably, we found that treatment with the BLT1 antagonist also reduced the production of proinflammatory cytokines by human peripheral blood DCs. Our findings reveal the critical role of BLT1 in regulating adaptive immunity and TNBS-induced colitis, which further supports BLT1 as a potential drug target for adaptive immunity-mediated IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Capra, V., Ambrosio, M., Riccioni, G. & Rovati, G. E. Cysteinyl-leukotriene receptor antagonists: present situation and future opportunities. Curr. Med. Chem. 13, 3213–3226 (2006).

    Article  CAS  Google Scholar 

  2. Shimizu, T., Radmark, O. & Samuelsson, B. Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc. Natl Acad. Sci. USA 81, 689–693 (1984).

    Article  CAS  Google Scholar 

  3. Lam, B. K., Penrose, J. F., Freeman, G. J. & Austen, K. F. Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc. Natl Acad. Sci. USA 91, 7663–7667 (1994).

    Article  CAS  Google Scholar 

  4. Zhang, S. Z., Zhao, X. H. & Zhang, D. C. Cellular and molecular immunopathogenesis of ulcerative colitis. Cell. Mol. Immunol. 3, 35–40 (2006).

    PubMed  Google Scholar 

  5. Elson, C. O., Sartor, R. B., Tennyson, G. S. & Riddell, R. H. Experimental models of inflammatory bowel disease. Gastroenterology 109, 1344–1367 (1995).

    Article  CAS  Google Scholar 

  6. Jurjus, A. R., Khoury, N. N. & Reimund, J. M. Animal models of inflammatory bowel disease. J. Pharmacol. Toxicol. Methods 50, 81–92 (2004).

    Article  CAS  Google Scholar 

  7. Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).

    Article  CAS  Google Scholar 

  8. Baumgart, D. C. & Carding, S. R. Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627–1640 (2007).

    Article  CAS  Google Scholar 

  9. Zhang, Z. et al. TAOK1 negatively regulates IL-17-mediated signaling and inflammation. Cell. Mol. Immunol. 2018.

  10. McKinstry, K. K., Strutt, T. M. & Swain, S. L. Regulation of CD4+T-cell contraction during pathogen challenge. Immunol. Rev. 236, 110–124 (2010).

    Article  CAS  Google Scholar 

  11. Zhu, J. & Paul, W. E. Heterogeneity and plasticity of T helper cells. Cell Res. 20, 4–12 (2010).

    Article  Google Scholar 

  12. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  Google Scholar 

  13. Lai, W. et al. Deficiency of the G protein Galphaq ameliorates experimental autoimmune encephalomyelitis with impaired DC-derived IL-6 production and Th17 differentiation. Cell. Mol. Immunol. 14, 557–567 (2017).

    Article  CAS  Google Scholar 

  14. Hue, S. et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med. 203, 2473–2483 (2006).

    Article  CAS  Google Scholar 

  15. Becker, C. et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Investig. 112, 693–706 (2003).

    Article  CAS  Google Scholar 

  16. Song, X., He, X., Li, X. & Qian, Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell. Mol. Immunol. 13, 418–431 (2016).

    Article  CAS  Google Scholar 

  17. Sharon, P. & Stenson, W. F. Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology 86, 453–460 (1984).

    CAS  PubMed  Google Scholar 

  18. Cuzzocrea, S. et al. 5-Lipoxygenase modulates colitis through the regulation of adhesion molecule expression and neutrophil migration. Lab. Investig. 85, 808–822 (2005).

    Article  CAS  Google Scholar 

  19. Holma, R. et al. Acute effects of the cys-leukotriene-1 receptor antagonist, montelukast, on experimental colitis in rats. Eur. J. Pharmacol. 429, 309–318 (2001).

    Article  CAS  Google Scholar 

  20. Iizuka, Y. et al. Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory colitis. FASEB J. 24, 4678–4690 (2010).

    Article  CAS  Google Scholar 

  21. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005).

    Article  CAS  Google Scholar 

  22. Dieleman, L. A. et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107, 1643–1652 (1994).

    Article  CAS  Google Scholar 

  23. Krieglstein, C. F. et al. Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J. Clin. Investig. 110, 1773–1782 (2002).

    Article  CAS  Google Scholar 

  24. Liu, J. et al. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nat. Immunol. 15, 612–622 (2014).

    Article  CAS  Google Scholar 

  25. Li, C. et al. Berberine ameliorates TNBS induced colitis by inhibiting inflammatory responses and Th1/Th17 differentiation. Mol. Immunol. 67(2 Pt B), 444–454 (2015).

    Article  CAS  Google Scholar 

  26. Mikami, Y. et al. Competition between colitogenic Th1 and Th17 cells contributes to the amelioration of colitis. Eur. J. Immunol. 40, 2409–2422 (2010).

    Article  CAS  Google Scholar 

  27. Brand, S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58, 1152–1167 (2009).

    Article  CAS  Google Scholar 

  28. Blanco, P., Palucka, A. K., Pascual, V. & Banchereau, J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 19, 41–52 (2008).

    Article  CAS  Google Scholar 

  29. Wang, L. et al. Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 187, 2336–2345 (2011).

    Article  CAS  Google Scholar 

  30. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  Google Scholar 

  31. Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3, 984–993 (2003).

    Article  CAS  Google Scholar 

  32. Schmitt, N. & Ueno, H. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 34, 130–136 (2015).

    Article  CAS  Google Scholar 

  33. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat. Immunol. 9, 641–649 (2008).

    Article  CAS  Google Scholar 

  34. Drakes, M. L., Blanchard, T. G. & Czinn, S. J. Colon lamina propria dendritic cells induce a proinflammatory cytokine response in lamina propria T cells in the SCID mouse model of colitis. J. Leukoc. Biol. 78, 1291–1300 (2005).

    Article  CAS  Google Scholar 

  35. Yokomizo, T. Two distinct leukotriene B4 receptors, BLT1 and BLT2. J. Biochem. 157, 65–71 (2015).

    Article  CAS  Google Scholar 

  36. Spite, M. et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J. Immunol. 187, 1942–1949 (2011).

    Article  CAS  Google Scholar 

  37. de Hoog, V. C. et al. BLT1 antagonist LSN2792613 reduces infarct size in a mouse model of myocardial ischaemia-reperfusion injury. Cardiovasc. Res. 108, 367–376 (2015).

    Article  Google Scholar 

  38. Kihara, Y. et al. The leukotriene B4 receptor, BLT1, is required for the induction of experimental autoimmune encephalomyelitis. Biochem. Biophys. Res. Commun. 394, 673–678 (2010).

    Article  CAS  Google Scholar 

  39. Del Prete, A. et al. Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function. Blood 109, 626–631 (2007).

    Article  Google Scholar 

  40. Tager, A. M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol. 4, 982–990 (2003).

    Article  CAS  Google Scholar 

  41. Miyahara, N. et al. Requirement for leukotriene B4 receptor 1 in allergen-induced airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 172, 161–167 (2005).

    Article  Google Scholar 

  42. Sawada, Y. et al. Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses. J. Exp. Med. 212, 1921–1930 (2015).

    Article  CAS  Google Scholar 

  43. Toda, A. et al. Attenuated Th1 induction by dendritic cells from mice deficient in the leukotriene B4 receptor 1. Biochimie 92, 682–691 (2010).

    Article  CAS  Google Scholar 

  44. Tavares, N. M. et al. Understanding the mechanisms controlling Leishmania amazonensis infection in vitro: the role of LTB4 derived from human neutrophils. J. Infect. Dis. 210, 656–666 (2014).

    Article  CAS  Google Scholar 

  45. Sanchez-Galan, E. et al. Leukotriene B4 enhances the activity of nuclear factor-kappaB pathway through BLT1 and BLT2 receptors in atherosclerosis. Cardiovasc. Res. 81, 216–225 (2009).

    Article  CAS  Google Scholar 

  46. Zhu, J., Zhang, Y., Shen, Y., Zhou, H. & Yu, X. Lycium barbarum polysaccharides induce Toll-like receptor 2- and 4-mediated phenotypic and functional maturation of murine dendritic cells via activation of NF-kappaB. Mol. Med. Rep. 8, 1216–1220 (2013).

    Article  CAS  Google Scholar 

  47. Lim, S. M., Jeong, J. J., Choi, H. S., Chang, H. B. & Kim, D. H. Mangiferin corrects the imbalance of Th17/Treg cells in mice with TNBS-induced colitis. Int. Immunopharmacol. 34, 220–228 (2016).

    Article  CAS  Google Scholar 

  48. Jin, Y., Lin, Y., Lin, L. & Zheng, C. IL-17/IFN-gamma interactions regulate intestinal inflammation in TNBS-induced acute colitis. J. Interferon Cytokine Res. 32, 548–556 (2012).

    Article  CAS  Google Scholar 

  49. Ito, N. et al. Requirement of phosphatidylinositol 3-kinase activation and calcium influx for leukotriene B4-induced enzyme release. J. Biol. Chem. 277, 44898–44904 (2002).

    Article  CAS  Google Scholar 

  50. Sabirsh, A., Bristulf, J. & Owman, C. Exploring the pharmacology of the leukotriene B4 receptor BLT1, without the confounding effects of BLT2. Eur. J. Pharmacol. 499, 53–65 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Science and Technology of China (2014CB541903), the National Natural Science Foundation of China (31171348 and 31371414), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Gao or Changsheng Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Lai, W., Yang, W. et al. BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis. Cell Mol Immunol 15, 1047–1056 (2018). https://doi.org/10.1038/s41423-018-0030-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0030-2

Keywords

This article is cited by

Search

Quick links