Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer

Abstract

Evidence indicates that lung cancer development is a complex process that involves interactions between tumor cells, stromal fibroblasts, and immune cells. Tumor-infiltrating immune cells play a significant role in the promotion or inhibition of tumor growth. As an integral component of the tumor microenvironment, tumor-infiltrating B lymphocytes (TIBs) exist in all stages of cancer and play important roles in shaping tumor development. Here, we review recent clinical and preclinical studies that outline the role of TIBs in lung cancer development, assess their prognostic significance, and explore the potential benefit of B cell-based immunotherapy for lung cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    Article  PubMed  Google Scholar 

  2. Remark, R. et al. The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am. J. Respir. Crit. Care. Med. 191, 377–390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kataki, A. et al. Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J. Lab. Clin. Med. 140, 320–328 (2002).

    Article  PubMed  Google Scholar 

  4. Brambilla, E. et al. Prognostic effect of tumor lymphocytic infiltration in resectable non-small-cell lung cancer. J. Clin. Oncol. 34, 1223–1230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bremnes, R. M. et al. The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer. J. Thorac. Oncol. 11, 789–800 (2016).

    Article  PubMed  Google Scholar 

  6. Schalper, K. A. et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J. Natl Cancer Inst. 107, dju435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marshall, E. A. et al. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol. Cancer 15, 67 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeltsman, M., Dozier, J., McGee, E., Ngai, D. & Adusumilli, P. S. CAR T-cell therapy for lung cancer and malignant pleural mesothelioma. Transl. Res. 187, 1–10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gottlin, E. B. et al. The association of intratumoral germinal centers with early-stage non-small cell lung cancer. J. Thorac. Oncol. 6, 1687–1690 (2011).

    Article  PubMed  Google Scholar 

  11. Dieu-Nosjean, M. C., Goc, J., Giraldo, N. A., Sautès-Fridman, C. & Fridman, W. H. Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 35, 571–580 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Banat, G. A. et al. Immune and inflammatory cell composition of human lung cancer stroma. PLoS ONE 10, e0139073 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kurebayashi, Y. et al. Comprehensive immune profiling of lung adenocarcinomas reveals four immunosubtypes with plasma cell subtype a negative indicator. Cancer Immunol. Res. 4, 234–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Siliņa, K., Rulle, U., Kalniņa, Z. & Line, A. Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol. Immunother. 63, 643–662 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Del Mar Valenzuela-Membrives, M. et al. Progressive changes in composition of lymphocytes in lung tissues from patients with non-small-cell lung cancer. Oncotarget 7, 71608–71619 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. de Chaisemartin, L. et al. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res. 71, 6391–6399 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Kawamata, N. et al. Expression of endothelia and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT) in adult human lung. Respir. Res. 10, 97 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, G. Z. et al. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife 4, e09419 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Campa, M. J. et al. Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery. Cancer Immunol. Immunother. 65, 171–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Germain, C. et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am. J. Respir. Crit. Care. Med. 189, 832–844 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Dieu-Nosjean, M. C. et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol. 26, 4410–4417 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Neyt, K., Perros, F., GeurtsvanKessel, C. H., Hammad, H. & Lambrecht, B. N. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 33, 297–305 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Sautès-Fridman, C. et al. Tertiary lymphoid structures in cancers: prognostic value, regulation, and manipulation for therapeutic intervention. Front. Immunol. 7, 407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Longerich, S., Basu, U., Alt, F. & Storb, U. AID in somatic hypermutation and class switch recombination. Curr. Opin. Immunol. 18, 164–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Mohr, E. et al. Dendritic cells and monocyte/macrophages that create the IL-6/APRIL-rich lymph node microenvironments where plasmablasts mature. J. Immunol. 182, 2113–2123 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. McDonald, K. G., McDonough, J. S. & Newberry, R. D. Adaptive immune responses are dispensable for isolated lymphoid follicle formation: antigen-naive, lymphotoxin-sufficient B lymphocytes drive the formation of mature isolated lymphoid follicles. J. Immunol. 174, 5720–5728 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Marchesi, F. et al. CXCL13 expression in the gut promotes accumulation of IL-22-producing lymphoid tissue-inducer cells, and formation of isolated lymphoid follicles. Mucosal Immunol. 2, 486–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Litsiou, E. et al. CXCL13 production in B cells via Toll-like receptor/lymphotoxin receptor signaling is involved in lymphoid neogenesis in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 187, 1194–1202 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Sautès-Fridman, C. et al. Tumor microenvironment is multifaceted. Cancer Metastas. Rev. 30, 13–25 (2011).

    Article  Google Scholar 

  31. Schrama, D. et al. Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14, 111–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Schrama, D. et al. Immunological tumor destruction in a murine melanoma model by targeted LTalpha independent of secondary lymphoid tissue. Cancer Immunol. Immunother. 57, 85–95 (2008).

    Article  PubMed  Google Scholar 

  33. Andreu, P. et al. FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 17, 121–134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 7, 411–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Lohr, M. et al. The prognostic relevance of tumour-infiltrating plasma cells and immunoglobulin kappa C indicates an important role of the humoral immune response in non-small cell lung cancer. Cancer Lett. 333, 222–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Mizukami, M. et al. Effect of IgG produced by tumor-infiltrating B lymphocytes on lung tumor growth. Anticancer. Res. 26, 1827–1831 (2006).

    PubMed  Google Scholar 

  37. Foy, K. C. et al. Peptide vaccines and peptidomimetics of EGFR (HER-1) ligand binding domain inhibit cancer cell growth in vitro and in vivo. J. Immunol. 191, 217–227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mizukami, M. et al. Anti-tumor effect of antibody against a SEREX-defined antigen (UOEH-LC-1) on lung cancer xenotransplanted into severe combined immunodeficiency mice. Cancer Res. 67, 8351–8357 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kinoshita, T. et al. Prognostic value of tumor-infiltrating lymphocytes differs depending on histological type and smoking habit in completely resected non-small-cell lung cancer. Ann. Oncol. 27, 2117–2123 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Eerola, A. K., Soini, Y. & Pääkkö, P. Tumour infiltrating lymphocytes in relation to tumour angiogenesis, apoptosis and prognosis in patients with large cell lung carcinoma. Lung. Cancer 26, 73–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Bruno, T. C. et al. Antigen-presenting intratumoral B cells affect CD4+TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol. Res 5, 898–907 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones, H. P., Wang, Y. C., Aldridge, B. & Weiss, J. M. Lung and splenic B cells facilitate diverse effects on in vitro measures of anti-tumor immune responses. Cancer Immun. 8, 4 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Yasuda, M. et al. Tumor-infiltrating B lymphocytes as a potential source of identifying tumor antigen in human lung cancer. Cancer Res. 62, 1751–1756 (2002).

    CAS  PubMed  Google Scholar 

  44. Zhu, W. et al. A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+T cell receptor repertoire clonality. Oncoimmunology 4, e1051922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi, J. Y. et al. Margin-infiltrating CD20(+) B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin. Cancer Res. 19, 5994–6005 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Kemp, T. J., Moore, J. M. & Griffith, T. S. Human B cells express functional TRAIL/Apo-2 ligand after CpG-containing oligodeoxynucleotide stimulation. J. Immunol. 173, 892–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Lindner, S. et al. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. 73, 2468–2479 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Balkwill, F., Montfort, A. & Capasso, M. B regulatory cells in cancer. Trends Immunol. 34, 169–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Fremd, C., Schuetz, F., Sohn, C., Beckhove, P. & Domschke, C. B cell-regulated immune responses in tumor models and cancer patients. Oncoimmunology 2, e25443 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schwartz, M., Zhang, Y. & Rosenblatt, J. D. B cell regulation of the anti-tumor response and role in carcinogenesis. J. Immunother. Cancer 4, 40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y., Gallastegui, N. & Rosenblatt, J. D. Regulatory B cells in anti-tumor immunity. Int. Immunol. 27, 521–530 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Lizotte, P. H. et al. Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes. JCI Insight 1, e89014 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sarvaria, A., Madrigal, J. A. & Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cell. Mol. Immunol. 14, 662–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mauri, C. & Bosma, A. Immune regulatory function of B cells. Annu. Rev. Immunol. 30, 221–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Mion, F., Tonon, S., Valeri, V. & Pucillo, C. E. Message in a bottle from the tumor microenvironment: tumor-educated DCs instruct B cells to participate in immunosuppression. Cell. Mol. Immunol. 14, 730–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cho, K. A. et al. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell. Mol. Immunol. 14, 895–908 (2017).

    CAS  PubMed Central  Google Scholar 

  57. Zhou, J. et al. Enhanced frequency and potential mechanism of B regulatory cells in patients with lung cancer. J. Transl. Med. 12, 304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Amrouche, K. & Jamin, C. Influence of drug molecules on regulatory B cells. Clin. Immunol. 184, 1–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Affara, N. I. et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell. 25, 809–821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, C. et al. B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS. One. 8, e64159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olkhanud, P. B. et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+T cells to T-regulatory cells. Cancer Res. 71, 3505–3515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bodogai, M. et al. Immune suppressive and pro-metastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res. 75, 3456–3465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, J. et al. Aberrant frequency of IL-10-producing B cells and its association with Treg and MDSC cells in non small cell lung carcinoma patients. Hum. Immunol. 77, 84–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, C. et al. Prognostic significance of B-cells and pSTAT3 in patients with ovarian cancer. PLoS ONE 8, e54029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, C. et al. CD5 binds to interleukin-6 and induces a feed-forward loop with the transcription factor STAT3 in B cells to promote cancer. Immunity 44, 913–923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pelletier, M. P., Edwardes, M. D., Michel, R. P., Halwani, F. & Morin, J. E. Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can. J. Surg. 44, 180–188 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Al-Shibli, K. I. et al. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin. Cancer Res. 14, 5220–5227 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Hernández-Prieto, S. et al. A 50-gene signature is a novel scoring system for tumor-infiltrating immune cells with strong correlation with clinical outcome of stage I/II non-small cell lung cancer. Clin. Transl. Oncol. 17, 330–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Hald, S. M. et al. CD4/CD8 co-expression shows independent prognostic impact in resected non-small cell lung cancer patients treated with adjuvant radiotherapy. Lung Cancer 80, 209–215 (2013).

    Article  PubMed  Google Scholar 

  72. Suzuki, K. et al. Clinical impact of immune microenvironment in stage I lung adenocarcinoma: tumor interleukin-12 receptor β2 (IL-12Rβ2), IL-7R, and stromal FoxP3/CD3 ratio are independent predictors of recurrence. J. Clin. Oncol. 31, 490–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Eerola, A. K., Soini, Y. & Pääkkö, P. A high number of tumor-infiltrating lymphocytes are associated with a small tumor size, low tumor stage, and a favorable prognosis in operated small cell lung carcinoma. Clin. Cancer Res. 6, 1875–1881 (2000).

    CAS  PubMed  Google Scholar 

  74. Faruki, H. et al. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J. Thorac. Oncol. 12, 943–953 (2017).

    Article  PubMed  Google Scholar 

  75. Schmidt, M. et al. A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin κ C as a compatible prognostic marker in human solid tumors. Clin. Cancer Res. 18, 2695–2703 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Fujimoto, M. et al. Stromal plasma cells expressing immunoglobulin G4 subclass in non-small cell lung cancer. Hum. Pathol. 44, 1569–1576 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Al-Shibli, K. et al. The prognostic value of intraepithelial and stromal CD3-, CD117- and CD138-positive cells in non-small cell lung carcinoma. APMIS 118, 371–382 (2010).

    Article  PubMed  Google Scholar 

  78. Chiaruttini, G. et al. B cells and the humoral response in melanoma: the overlooked players of the tumor microenvironment. Oncoimmunology 6, e1294296 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Klotz, M. et al. Shift in the IgG subclass distribution in patients with lung cancer. Lung. Cancer 24, 25–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Collisson, E. A. et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  CAS  Google Scholar 

  81. Hammerman, P. S. et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

    Article  CAS  Google Scholar 

  82. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Iglesia, M. D. et al. Genomic analysis of immune cell infiltrates across 11 tumor types. J. Natl Cancer Inst. 108, djw144 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  84. Mount, D. W. et al. Using logistic regression to improve the prognostic value of microarray gene expression data sets: application to early-stage squamous cell carcinoma of the lung and triple negative breast carcinoma. BMC Med. Genom. 7, 33 (2014).

    Article  Google Scholar 

  85. Torre, L. A., Siegel, R. L. & Jemal, A. Lung cancer statistics. Adv. Exp. Med. Biol. 893, 1–19 (2016).

    Article  PubMed  Google Scholar 

  86. Sorrentino, R. et al. B cells contribute to the anti-tumor activity of CpG-oligodeoxynucleotide in a mouse model of metastatic lung carcinoma. Am. J. Respir. Crit. Care. Med. 183, 1369–1379 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Li, Q., Teitz-Tennenbaum, S., Donald, E. J., Li, M. & Chang, A. E. In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. J. Immunol. 183, 3195–3203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tao, H. et al. Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL-10. Eur. J. Immunol. 45, 999–1009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bodogai, M. et al. Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. Cancer Res. 73, 2127–2138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liao, S. F. et al. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes. Proc. Natl Acad. Sci. USA 110, 13809–13814 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Chapoval, A. I., Fuller, J. A., Kremlev, S. G., Kamdar, S. J. & Evans, R. Combination chemotherapy and IL-15 administration induce permanent tumor regression in a mouse lung tumor model: NK and T cell-mediated effects antagonized by B cells. J. Immunol. 161, 6977–6984 (1998).

    CAS  PubMed  Google Scholar 

  92. Kim, S. et al. B-cell depletion using an anti-CD20 antibody augments anti-tumor immune responses and immunotherapy in nonhematopoetic murine tumor models. J. Immunother. 31, 446–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Joly-Battaglini, A. et al. Rituximab efficiently depletes B cells in lung tumors and normal lung tissue. F1000Res. 5, 38 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee-Chang, C. et al. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J. Immunol. 191, 4141–4151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Song, S. S. et al. Protective effects of total glucosides of paeony on N-nitrosodiethylamine-induced hepatocellular carcinoma in rats via down-regulation of regulatory B cells. Immunol. Invest. 44, 521–535 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, Z. et al. Lipid mediator lipoxin A4 inhibits tumor growth by targeting IL-10-producing regulatory B (Breg) cells. Cancer Lett. 364, 118–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Wejksza, K. et al. Cancer-produced metabolites of 5-lipoxygenase induce tumor-evoked regulatory B cells via peroxisome proliferator-activated receptor α. J. Immunol. 190, 2575–2584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant #81502202), the Canadian Cancer Society Research Institute (grant #704121), the China Postdoctoral Science Foundation (grant #2017M611329), and the Scientific Research Project in the Science and Technology Development Plan of Jilin Province (grant #20150520142JH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Li Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ss., Liu, W., Ly, D. et al. Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer. Cell Mol Immunol 16, 6–18 (2019). https://doi.org/10.1038/s41423-018-0027-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0027-x

Keywords

This article is cited by

Search

Quick links