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The long and latent road to autoimmunity
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Autoimmune diseases affect nearly 5% of the general population,
yet etiology remains poorly understood. Genomic factors are
clearly necessary but remain insufficient to explain the loss of
tolerance; environmental and stochastic factors fill this gap. This
paradigm is indicated by the concordance rates (ranging between
4 and 63%) for autoimmune diseases among monozygotic twins,
who share an identical genome, compared to the invariably lower
rates in dizygotic twins. The term “exposome” cumulatively refers
to the non-hereditary (i.e., environmental) factors that account for
the remaining susceptibility and include endogenous factors such
as hormones. Accumulating evidence suggests that exposure to
infections, drugs, vaccines, and chemicals may contribute to the
loss of tolerance. The mechanisms by which environmental factors
can shape the immune system to generate autoimmunity include
molecular mimicry, self-antigen modification, bystander activation,
and immune reactivity modulation. In all cases, we should first
consider the prolonged time between an environmental trigger
and the appearance of autoreactivity and subsequent clinical
disease. In this special issue, several excellent reviews discuss the
potential mechanisms linking environmental factors and
autoimmunity.

The concept of autoimmunity, or an immune response directed
toward the self, dates back to 1890 and coincides with the
beginning of the modern era of immunology. Before then, it was
already known that the body can protect from the dangers of the
outer world (the environment) and can learn from the experience,
i.e., adaptive immunity. Nonetheless, at the beginning of the

twentieth century, serum sickness, blood group reactions, and
anaphylaxis were reported. In 1901, autoantibodies were
described by Paul Ehrlich; however, it took several decades to
develop modern technologies (i.e., electrophoresis, radioactivity,
and chromatography) that could be used to identify specific
serum reactivities. In 1930s and 1940s, Eric Waaler and Harry Rose
simultaneously described what we now coin rheumatoid factors in
rheumatoid arthritis (RA), and in 1948, antibodies directed toward
cells and nuclei were described in systemic lupus erythematosus
(SLE). In 1960s–1970s, autoantibodies were recognized as the first
manifestation of autoimmune diseases.
Clinical epidemiology has linked infections and autoimmunity.

The increasing incidence of autoimmune and inflammatory
diseases during the last century led to the suggestion of the
“hygiene hypothesis”, linking immune dysregulation to sanitation.
The impact of environmental factors in autoimmunity was the
focus of a National Institute of Environmental Health Sciences
(NIEHS) expert panel workshop in 2012; this panel has critically
re-evaluated the epidemiology and mechanistic studies associated
with autoimmunity in the scientific literature.1 The concept of the
“exposome” was introduced to collate and measure the effects of
environmental factors—both exogenous and endogenous. With
respect to endogenous exposure, the microbiota that constitute
the ecological community of commensal, symbiotic and patho-
genic microorganisms living on our mucosal surfaces has been
identified as an environmentally induced influencer of auto-
immunity, which is elegantly reviewed in this special issue (Bo Li,
CMI, 2017). Despite significant progress in genetics, clinical
epidemiology, and technical and analytical methodology, it
remains unclear why autoimmunity affects as many as 5% of
the general population. Autoimmunity remains a hot topic in
immunology, as exemplified by the continuously growing number
of publications (Invernizzi P., CMI; Lu Q., CMI, Bo Li, CMI, 2017,
Shoenfeld Y., CMI).2–4 Although we should not overlook the
possible role of stochastic factors, the intriguing relationship
between autoimmunity and the environment may help us
understand the mechanisms of disease development and lead
to the improvement of therapeutic strategies.
Environmental factors, particularly infections, can trigger an

exaggerated immune response in genetically predisposed
individuals, but several stimuli may be necessary for the
establishment of an autoimmune disease; this is well exemplified
by epigenetic changes that can alter the immune response (Lu Q.,
CMI, 2017).5 How a system that is designed to recognize and
eliminate pathogens can revert its action and cause destructive
self-responses, i.e., break tolerance, is a key question that remains
unanswered. There are several mechanisms by which environ-
mental factors can shape the immune system to generate
autoimmunity. These mechanisms include molecular mimicry,
self-antigen modification, bystander activation, and immune
reactivity modulation.
Molecular mimicry occurs when foreign antigens share

sequences or structural similarities with self-antigens (Shoenfeld
Y., CMI, 2017). A classic example of a disease that is involved in
molecular mimicry is rheumatic fever, in which T cells respond to a
specific peptide epitope of Streptococcus pyogenes and stimulate
the generation of the B cells of a cross-reactive antibody to human
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cardiac myosin, resulting in acute rheumatic fever-associated
carditis. Such processes may occur during the pathogenesis of
other autoimmune diseases, e.g., Escherichia coli and primary
biliary cholangitis (PBC), in which cross-reactivity occurs between
E. coli and E2-PDC, triggering the anti-mitochondrial immune
response in PBC.6 An additional example is related to reactivity to
Campylobacter in the induction of Guillain-Barrè syndrome.
Pathogens may induce the release of intracellular self-antigens

during a chronic autoimmune or inflammatory response and also
at the mucosal surface with the induction of neutrophil
extracellular traps (NETs), which develop in response to bacteria
or inflammation. This mechanism has been observed in RA and
SLE.7 In the case of RA, intracellular antibacterial and citrullinated
proteins are externalized and can trigger mucosal anti-cyclic
citrullinated peptide antibody (ACPA) responses.

Post-translational modifications play an important role in
autoimmune diseases during pathogenesis. It is estimated
that 50–90% of proteins are subjected to post-translational
modifications, and these changes may contribute to tolerance
breakdown. Post-translational modifications include acetylation,
lipidation, citrullination, and glycosylation, among others, and are
crucial for specific autoantibody recognition of autoimmune
diseases, i.e., RA and multiple sclerosis. Conversely, altered protein
degradation that leads to the accumulation and exposure of large
amounts of autoantigens may likewise be important (Invernizzi P.,
CMI, 2017). Some pathogens are able to modify self-proteins or
expose microbial antigens that resemble self-proteins, thereby
creating neoantigens. For example, Porphyromonas gingivalis
expresses a peptidylarginine deaminase (PAD) enzyme capable
of citrullinating self-proteins (fibrinogen and enolase); these self-
proteins act as neoantigens and can bind with high affinity to the
major histocompatibility complex class II HLA-DR4 shared
epitopes, leading in turn to anti-citrullinated peptide antibodies
and rheumatoid arthritis development. Autoantibodies directed
toward modified proteins bind both the native and the
modified forms of collagen type II in the pathogenesis of RA;
recent data have revealed different B and T cell epitopes on type II
collagen. B and T cell epitopes may undergo citrullination and
glycosylation in vivo, thus inducing immune activation in
genetically predisposed subjects.8

Although the study of autoimmune diseases has long centered
on the adaptive immune system, the discovery that innate

immune cells express sensors for foreign and self-ligands
has shifted the focus toward the first defense from the
environment, which precedes the adaptive response. The innate
immune system recognizes broad patterns or molecular
motifs called pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs) by
germline-encoded “common” receptors called pattern recognition
receptors (PRRs). These mechanisms allow a more rapid
screening of self from “non-self” molecules. Toll-like receptors
(TLR) are a family of PRRs that recognize PAMPs that are
characteristic of pathogenic microorganisms. TLRs play a key role
in the interplay between the innate and adaptive immune systems
and are associated with the pathogenesis of autoimmune
diseases.9 By inducing the production of type I interferons (IFNs)
and pro-inflammatory cytokines, these sensors are both endoso-
mal and cytosolic, and their activation in dendritic cells (DCs)
represents the initiating factor of several autoimmune diseases; in
turn, this phenomenon can activate T and B cells and autoanti-
body production.10 Interestingly, environmental factors such as
viral infections, stress, injury, and UV light are sufficient for
exposing endogenous PAMPs to the innate immune system via
active/passive release; these PAMP molecules subsequently
interact with PRRs such as TLRs to activate NF-kB-like transcription
factors.11

Bystander activation occurs when a pathogen stimulates TLRs
and other PRRs on antigen-presenting cells (APC), leading to the
production of pro-inflammatory mediators, which in turn lead to
tissue damage. In this context, the release of both tissue and
bacterial antigens can stimulate bacterial-specific T cells and non-
specific autoreactive T cells. Alternatively, some bacteria may
express superantigens that can activate T cells in a T cell receptor-
independent manner. Bystander activation is hypothesized to play
a role in the pathogenesis of SLE, since bacterial and viral DNA can
signal through TLRs, which can lead to excessive type I IFN
responses and polyclonal B cell activation. Another example is the
association between Staphylococcus aureus and antineutrophil
cytoplasmic antibody (ANCA) vasculitis, since S. aureus DNA
contains methylation motifs that can activate ANCA-producing B
cells via TLRs in patients with ANCA-associated vasculitis.12

Nucleic acid sensors, such as the cationic peptide LL37, which
contributes to the antimicrobial defense mechanism of damaged
skin, have been implicated in this response. In psoriasis, LL37
forms complexes with extracellular self-nucleic acids present in
the affected skin as the result of the inflammatory process and
associated cell damage, and LL37 allows entry of these nucleic
acids into intracellular compartments containing TLR7/8/9 or
cytosolic DNA sensors.13 Moreover, by circulating T cells, LL37 acts
as an autoantigen and induces IL-17 production in psoriasis
patients, and LL37 is correlated with disease severity.14 Other
nucleic acid sensors include IFI16, which is overexpressed in
several autoimmune diseases, and autoantibodies directed toward
IFI16 have also been reported.15,16

Th17 cells participate in the response to extracellular bacterial
and fungal infection;17 Th17 cells are localized mainly at mucosal
sites of healthy subjects and are activated via TLR2 signaling.
Microbiota mucosal interaction is thought to modulate Th17 cell
activation, while dietary components and environmental toxins
also influence the Th17 response18 (Bo LI, CMI, 2017). In particular,
commensal segmented filamentous bacteria (SFB) induce pro-
inflammatory Th17 cells in the small intestine lamina propria,
probably due to the adherent colonization of the intestinal
epithelium by SFB, which enter the mucosal layer and adhere
tightly to the terminal ileum epithelial cells.19 SFB are believed to
also exert an effect on autoimmune diseases. Indeed, several
studies using animal models have demonstrated that SFB
colonization promotes RA and multiple sclerosis but is protective
against diabetes in non-obese diabetic (NOD) mice.20,21 The effect
of SFB on immune cells depends on the genetic background, as
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exemplified by increased gut permeability and altered gut
microbial communities in HLA-DRB1*0401-susceptible RA mouse
models.22 The importance of Th17 cells is of particular interest in
psoriasis and in psoriatic arthritis, since these cells represent a
crucial mediator of chronic inflammation; in addition, biologics
targeting IL-17 cells have been approved to treat these diseases.23

Tregs are T cells characterized by the expression of CD3, CD25,
and the transcription factor forkhead box P3 (FOXP3); Tregs play a
major role in the maintenance of our immune system.24

Epidemiological studies suggest that environmental factors
influence the number or activation of Treg cells.25 Moreover, sex
hormones play an important role in Treg development, which may
underlie the female predominance.1

B cells represent a crucial mediator of autoimmune diseases, as
exemplified by autoantibody production and the hypergamma-
globulinemia found in SLE, SSc, and PBC4 (Invernizzi P., CMI, 2017).
B cells generate their pre-immune inventory in the bone marrow
via a genetic recombination process known as V(D)J recombina-
tion; this recombination leads to an inventory of 107–108 B cells,
each with unique surface receptors. This recombination leads to
autoreactive B cells. In fact, early immature B cells in 55–75% of
cases display autoreactivity, which leads to 20% autoreactive
mature B cells. Several checkpoints exist to ensure that
autoreactive B cells are excluded from immunocompetent
peripheral lymphocytes. Despite these checkpoints, polyspecific
autoreactive B cells are found in the periphery and produce
polyspecific natural autoantibodies.26 These natural autoantibo-
dies are usually germline-encoded, of the IgM isotype, and non-
pathogenic; however, polyspecific B cells may undergo somatic
hypermutation and class switching to produce high-affinity IgG
pathogenetic autoantibodies.27 Recently B regulatory cells (Bregs),
a subpopulation of B cells producing IL-10, have been extensively
studied with respect to autoimmune diseases and are reduced in
autoimmune diseases, both in number and functionality.28,29

Moreover, IL-35 and TGF-β have also been associated with B cell-
mediated immunosuppression in Salmonella infection in mice.30 In
fact, via IL-10, Bregs may also have a role in infectious diseases,
particularly with respect to viral infections such as HIV and
hepatitis B virus (HBV). In HBV, Bregs regulate antigen-specific
CD8+ T cells during HBV infection.31 Regarding HIV, via T cell
impairment, Bregs contribute to immune dysfunction associated
with HIV infection; this contribution occurs specifically by the

expression of IL-10 and possibly programmed death (PD)-L1, a
member of the B7-H1 family. The suppressive properties of Bregs
in HIV infection are associated with the prevalence of TLR ligands
and CD40L.
The mechanisms leading to autoimmunity are reviewed in this

issue of Cellular and Molecular Immunology. We hypothesize that
more than one of these pathways lead to the onset of
autoimmune diseases. We foresee that the application of new
high-throughput technologies and data mining will allow finer
recognition of disease-specific pathways and the development of
specific cell types or molecules to suppress autoimmunity and
restore immune balance. These processes are expected to take a
long time, and the treatment of autoimmune diseases remains a
major challenge.
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