Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Type I interferons promote the survival and proinflammatory properties of transitional B cells in systemic lupus erythematosus patients

Abstract

A hallmark of systemic lupus erythematosus (SLE) is the breaking of B-cell tolerance with the generation of high-affinity autoantibodies; however, the antibody-independent features of the B-cell compartment in SLE are less understood. In this study, we performed an extensive examination of B-cell subsets and their proinflammatory properties in a Chinese cohort of new-onset SLE patients. We observed that SLE patients exhibited an increased frequency of transitional B cells compared with healthy donors and rheumatoid arthritis patients. Plasma from SLE patients potently promoted the survival of transitional B cells in a type I IFN-dependent manner, which can be recapitulated by direct IFN-α treatment. Furthermore, the effect of IFN-α on enhanced survival of transitional B cells was associated with NF-κB pathway activation and reduced expression of the pro-apoptotic molecule Bax. Transitional B cells from SLE patients harbored a higher capacity to produce proinflammatory cytokine IL-6, which was also linked to the overactivated type I IFN pathway. In addition, the frequency of IL-6-producing transitional B cells was positively correlated with disease activity in SLE patients, and these cells were significantly reduced after short-term standard therapies. Thus, the current study provides a direct link between type I IFN pathway overactivation and the abnormally high frequency and proinflammatory properties of transitional B cells in active SLE patients, which contributes to the understanding of the roles of type I IFNs and B cells in the pathogenesis of SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plasma from SLE patients protects transitional B cells from apoptosis.
Fig. 2: SLE plasma enhances Btr cells survival in a type I IFN-dependent manner.
Fig. 3: IFN-α protects Btr cells from spontaneous apoptosis.
Fig. 4: NF-κB pathway is involved in IFN-α-mediated Btr cell survival.
Fig. 5: Proinflammatory potency of transitional B cells in active SLE patients.
Fig. 6: IFN-α promotes IL-6 expression in transitional B cells.
Fig. 7: The frequency of IL-6-producing Btr cells is strongly correlated with disease activities in SLE patients.
Fig. 8: The frequency of IL-6-producing Btr cells is decreased in SLE patients after short standard therapy.

Similar content being viewed by others

References

  1. Kaul, A. et al. Systemic lupus erythematosus. Nat. Rev. Dis. Prim. 2, 16039 (2016).

    Article  Google Scholar 

  2. Dorner, T., Giesecke, C. & Lipsky, P. E. Mechanisms of B cell autoimmunity in SLE. Arthritis Res. Ther. 13, 243 (2011).

    Article  Google Scholar 

  3. Duxbury, B., Combescure, C. & Chizzolini, C. Rituximab in systemic lupus erythematosus: an updated systematic review and meta-analysis. Lupus 22, 1489–1503 (2013).

    Article  CAS  Google Scholar 

  4. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  Google Scholar 

  5. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  Google Scholar 

  6. Dorner, T. & Lipsky, P. E. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat. Rev. Rheumatol. 12, 645–657 (2016).

    Article  Google Scholar 

  7. Sanz, I. Systemic lupus erythematosus: extent and patterns of off-label use of rituximab for SLE. Nat. Rev. Rheumatol. 12, 700–702 (2016).

    Article  Google Scholar 

  8. Jacobi, A. M. et al. HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 69, 305–308 (2010).

    Article  CAS  Google Scholar 

  9. Rodriguez-Bayona, B., Ramos-Amaya, A., Perez-Venegas, J. J., Rodriguez, C. & Brieva, J. A. Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res. Ther. 12, R108 (2010).

    Article  Google Scholar 

  10. Zhao, L. D. et al. Contribution and underlying mechanisms of CXCR4 overexpression in patients with systemic lupus erythematosus. Cell. Mol. Immunol. 14, 842–849 (2017).

    Article  CAS  Google Scholar 

  11. Cappione, A. 3rd et al. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Invest. 115, 3205–3216 (2005).

    Article  CAS  Google Scholar 

  12. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    Article  CAS  Google Scholar 

  13. Lino, A. C., Dorner, T., Bar-Or, A. & Fillatreau, S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol. Rev. 269, 130–144 (2016).

    Article  CAS  Google Scholar 

  14. Cho K. A., et al. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell. Mol. Immunol. 14, 895–908 (2017).

    Article  CAS  Google Scholar 

  15. Sieber, J. et al. Active systemic lupus erythematosus is associated with a reduced cytokine production by B cells in response to TLR9 stimulation. Arthritis Res. Ther. 16, 477 (2014).

    Article  Google Scholar 

  16. Crow, M. K. Type I interferon in the pathogenesis of lupus. J. Immunol. 192, 5459–5468 (2014).

    Article  CAS  Google Scholar 

  17. Menon, M., Blair, P. A., Isenberg, D. A. & Mauri, C. A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity 44, 683–697 (2016).

    Article  CAS  Google Scholar 

  18. Kirou, K. A. et al. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491–1503 (2005).

    Article  CAS  Google Scholar 

  19. Hua, J., Kirou, K., Lee, C. & Crow, M. K. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 54, 1906–1916 (2006).

    Article  CAS  Google Scholar 

  20. Palanichamy, A. et al. Neutrophil-mediated IFN activation in the bone marrow alters B cell development in human and murine systemic lupus erythematosus. J. Immunol. 192, 906–918 (2014).

    Article  CAS  Google Scholar 

  21. Uccellini, M. B. et al. Autoreactive B cells discriminate CpG-rich and CpG-poor DNA and this response is modulated by IFN-alpha. J. Immunol. 181, 5875–5884 (2008).

    Article  CAS  Google Scholar 

  22. Bekeredjian-Ding, I. B. et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J. Immunol. 174, 4043–4050 (2005).

    Article  Google Scholar 

  23. Kiefer, K., Oropallo, M. A., Cancro, M. P. & Marshak-Rothstein, A. Role of type I interferons in the activation of autoreactive B cells. Immunol. Cell Biol. 90, 498–504 (2012).

    Article  CAS  Google Scholar 

  24. Wehr, C. et al. A new CD21low B cell population in the peripheral blood of patients with SLE. Clin. Immunol. 113, 161–171 (2004).

    Article  CAS  Google Scholar 

  25. Sims, G. P. et al. Identification and characterization of circulating human transitional B cells. Blood 105, 4390–4398 (2005).

    Article  CAS  Google Scholar 

  26. Lee, J., Kuchen, S., Fischer, R., Chang, S. & Lipsky, P. E. Identification and characterization of a human CD5+ pre-naive B cell population. J. Immunol. 182, 4116–4126 (2009).

    Article  CAS  Google Scholar 

  27. Gladman, D. D., Ibanez, D. & Urowitz, M. B. Systemic lupus erythematosus disease activity index 2000. J. Rheumatol. 29, 288–291 (2002).

    PubMed  Google Scholar 

  28. Kong, K. O. et al. Enhanced expression of interferon-inducible protein-10 correlates with disease activity and clinical manifestations in systemic lupus erythematosus. Clin. Exp. Immunol. 156, 134–140 (2009).

    Article  CAS  Google Scholar 

  29. Bentires-Alj, M. et al. Inhibition of the NF-kappa B transcription factor increases Bax expression in cancer cell lines. Oncogene 20, 2805–2813 (2001).

    Article  CAS  Google Scholar 

  30. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  Google Scholar 

  31. Ruuth, K., Carlsson, L., Hallberg, B. & Lundgren, E. Interferon-alpha promotes survival of human primary B-lymphocytes via phosphatidylinositol 3-kinase. Biochem. Biophys. Res. Commun. 284, 583–586 (2001).

    Article  CAS  Google Scholar 

  32. Badr, G. et al. Type I interferon (IFN-alpha/beta) rescues B-lymphocytes from apoptosis via PI3Kdelta/Akt, Rho-A, NFkappaB and Bcl-2/Bcl(XL). Cell. Immunol. 263, 31–40 (2010).

    Article  CAS  Google Scholar 

  33. Chang, N. H. et al. Interferon-alpha induces altered transitional B cell signaling and function in systemic lupus erythematosus. J. Autoimmun. 58, 100–110 (2015).

    Article  CAS  Google Scholar 

  34. Yang, C. H. et al. IFNalpha/beta promotes cell survival by activating NF-kappa B. Proc. Natl. Acad. Sci. USA 97, 13631–13636 (2000).

    Article  CAS  Google Scholar 

  35. Batten, M. et al. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med. 192, 1453–1466 (2000).

    Article  CAS  Google Scholar 

  36. Rowland, S. L., Leahy, K. F., Halverson, R., Torres, R. M. & Pelanda, R. BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J. Immunol. 185, 4570–4581 (2010).

    Article  CAS  Google Scholar 

  37. Woodland, R. T. et al. Multiple signaling pathways promote B lymphocyte stimulator dependent B-cell growth and survival. Blood 111, 750–760 (2008).

    Article  CAS  Google Scholar 

  38. Zhang, X. Regulatory functions of innate-like B cells. Cell. Mol. Immunol. 10, 113–121 (2013).

    Article  CAS  Google Scholar 

  39. Yeo, L. et al. Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann. Rheum. Dis. 70, 2022–2028 (2011).

    Article  CAS  Google Scholar 

  40. Adlowitz, D. G. et al. Expansion of activated peripheral blood memory B cells in rheumatoid arthritis, impact of B cell depletion therapy, and biomarkers of response. PLoS ONE 10, e0128269 (2015).

    Article  Google Scholar 

  41. Barr, T. A. et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 209, 1001–1010 (2012).

    Article  CAS  Google Scholar 

  42. Fleischer, V. et al. Epratuzumab inhibits the production of the proinflammatory cytokines IL-6 and TNF-alpha, but not the regulatory cytokine IL-10, by B cells from healthy donors and SLE patients. Arthritis Res. Ther. 17, 185 (2015).

    Article  Google Scholar 

  43. Blair, P. A. et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    Article  CAS  Google Scholar 

  44. Flores-Borja, F. et al. CD19+ CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med. 5, 173ra123 (2013).

    Article  Google Scholar 

  45. Daien, C. I. et al. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis Rheumatol. 66, 2037–2046 (2014).

    Article  CAS  Google Scholar 

  46. Peterson, E., Robertson, A. D. & Emlen, W. Serum and urinary interleukin-6 in systemic lupus erythematosus. Lupus 5, 571–575 (1996).

    Article  CAS  Google Scholar 

  47. Tackey, E., Lipsky, P. E. & Illei, G. G. Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 13, 339–343 (2004).

    Article  CAS  Google Scholar 

  48. Rovin, B. H. et al. A multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of treatment with sirukumab (CNTO 136) in patients with active lupus nephritis. Arthritis Rheumatol. 68, 2174–2183 (2016).

    Article  CAS  Google Scholar 

  49. Wallace, D. J. et al. Efficacy and safety of an interleukin 6 monoclonal antibody for the treatment of systemic lupus erythematosus: a phase II dose-ranging randomised controlled trial. Ann. Rheum. Dis. 76, 534–542 (2017).

    Article  CAS  Google Scholar 

  50. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    Article  CAS  Google Scholar 

  51. Wei, C. et al. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J. Immunol. 178, 6624–6633 (2007).

    Article  CAS  Google Scholar 

  52. Fleischer, S. J. et al. Increased frequency of a unique spleen tyrosine kinase bright memory B cell population in systemic lupus erythematosus. Arthritis Rheumatol. 66, 3424–3435 (2014).

    Article  CAS  Google Scholar 

  53. Crow, M. K., Olferiev, M. & Kirou, K. A. Targeting of type I interferon in systemic autoimmune diseases. Transl. Res. J. Lab. Clin. Med. 165, 296–305 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2014CB541904); the National Natural Science Foundation of China (Nos. 31470879 81571575 8171101311 and 31770960); the Interdisciplinary Innovation Team, External Cooperation Program (No. GJHZ201312) and Key Project QYZDB-SSW-SMC036; and the Strategic Priority Research Program (No. XDPB0303), Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Fu or Xiaoming Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Guo, Q., Wu, C. et al. Type I interferons promote the survival and proinflammatory properties of transitional B cells in systemic lupus erythematosus patients. Cell Mol Immunol 16, 367–379 (2019). https://doi.org/10.1038/s41423-018-0010-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0010-6

Keywords

This article is cited by

Search

Quick links